scholarly journals Lightweight and Side-channel Secure 4 × 4 S-Boxes from Cellular Automata Rules

Author(s):  
Ashrujit Ghoshal ◽  
Rajat Sadhukhan ◽  
Sikhar Patranabis ◽  
Nilanjan Datta ◽  
Stjepan Picek ◽  
...  

This work focuses on side-channel resilient design strategies for symmetrickey cryptographic primitives targeting lightweight applications. In light of NIST’s lightweight cryptography project, design choices for block ciphers must consider not only security against traditional cryptanalysis, but also side-channel security, while adhering to low area and power requirements. In this paper, we explore design strategies for substitution-permutation network (SPN)-based block ciphers that make them amenable to low-cost threshold implementations (TI) - a provably secure strategy against side-channel attacks. The core building blocks for our strategy are cryptographically optimal 4×4 S-Boxes, implemented via repeated iterations of simple cellular automata (CA) rules. We present highly optimized TI circuits for such S-Boxes, that consume nearly 40% less area and power as compared to popular lightweight S-Boxes such as PRESENT and GIFT. We validate our claims via implementation results on ASIC using 180nm technology. We also present a comparison of TI circuits for two popular lightweight linear diffusion layer choices - bit permutations and MixColumns using almost-maximum-distance-separable (almost-MDS) matrices. We finally illustrate design paradigms that combine the aforementioned TI circuits for S-Boxes and diffusion layers to obtain fully side-channel secure SPN block cipher implementations with low area and power requirements.

Author(s):  
Shun Li ◽  
Siwei Sun ◽  
Danping Shi ◽  
Chaoyun Li ◽  
Lei Hu

As perfect building blocks for the diffusion layers of many symmetric-key primitives, the construction of MDS matrices with lightweight circuits has received much attention from the symmetric-key community. One promising way of realizing low-cost MDS matrices is based on the iterative construction: a low-cost matrix becomes MDS after rising it to a certain power. To be more specific, if At is MDS, then one can implement A instead of At to achieve the MDS property at the expense of an increased latency with t clock cycles. In this work, we identify the exact lower bound of the number of nonzero blocks for a 4 × 4 block matrix to be potentially iterative-MDS. Subsequently, we show that the theoretically lightest 4 × 4 iterative MDS block matrix (whose entries or blocks are 4 × 4 binary matrices) with minimal nonzero blocks costs at least 3 XOR gates, and a concrete example achieving the 3-XOR bound is provided. Moreover, we prove that there is no hope for previous constructions (GFS, LFS, DSI, and spares DSI) to beat this bound. Since the circuit latency is another important factor, we also consider the lower bound of the number of iterations for certain iterative MDS matrices. Guided by these bounds and based on the ideas employed to identify them, we explore the design space of lightweight iterative MDS matrices with other dimensions and report on improved results. Whenever we are unable to find better results, we try to determine the bound of the optimal solution. As a result, the optimality of some previous results is proved.


Author(s):  
Sumanta Sarkar ◽  
Habeeb Syed

MDS matrices are used as building blocks of diffusion layers in block ciphers, and XOR count is a metric that estimates the hardware implementation cost. In this paper we report the minimum value of XOR counts of 4 × 4 MDS matrices over F24 and F28 , respectively. We give theoretical constructions of Toeplitz MDS matrices and show that they achieve the minimum XOR count. We also prove that Toeplitz matrices cannot be both MDS and involutory. Further we give theoretical constructions of 4 × 4 involutory MDS matrices over F24 and F28 that have the best known XOR counts so far: for F24 our construction gives an involutory MDS matrix that actually improves the existing lower bound of XOR count, whereas for F28 , it meets the known lower bound.


2017 ◽  
Vol 11 (7) ◽  
pp. 1 ◽  
Author(s):  
Yi-Jian Liu ◽  
Jian Cao ◽  
Xiao-Yan Cao ◽  
Yuan-Biao Zhang

As an important field in traffic control science, the research in design of toll plazas has increasingly attracted attention of scholars and society. A good design of toll plaza needs to meet a lot of conditions, such as high safety coefficient, high throughput and low cost level. In this study, we established an evaluation model of toll plaza based on cellular automata and M/M/C queuing theory applying to three aspects: safety coefficient, throughput and cost. Then, we took the Asbury Park Toll Plaza in New Jersey as an example to analyze its performance and further optimized the design of the toll plaza. Compared with the original design, the optimized toll plaza we designed is proved to be safer and preferable. Last but not least, we further analyzed the robustness of the designed toll plaza, proving that the designed toll plaza had a preferable performance in reality.


2021 ◽  
pp. C1-C1
Author(s):  
Meziane Hamoudi ◽  
Amina Bel Korchi ◽  
Sylvain Guilley ◽  
Sofiane Takarabt ◽  
Khaled Karray ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document