scholarly journals Mathematical Modeling of Food Processing Operations: A Basic Understanding and Overview

2021 ◽  
Vol 2 (2) ◽  
pp. 472-492
Author(s):  
Manibhushan KUMAR ◽  
Siddhartha VATSA ◽  
Mitali MADHUMİTA ◽  
Pramod K PRABHAKAR

Modeling is the core of food processing supported by many approaches and governed by heat, mass, and momentum transfer equations. The objective of this paper is to mainly discuss and introduce mathematical modeling of some food processes. Food processing is unique from other material processing, as it includes complex multiphase transport and change in material properties during processing. It poses a great challenge in food process engineering. Now a day’s, consumers are taking more precautions before eating something. The way of food processing effectively impacts food quality. Most of the conventional industries use thermal processes like pasteurization, sterilization, and freezing. In recent years the main aim has been to improve these conventional processing technologies. Characterization of temperature distribution is done by mathematical modeling during processing, so this review paper aims to introduce mathematical modeling as a potential tool for the food processing industry. The mathematical models discussed in this article captures the essential features of a complex object or process based on a theoretical understanding of the phenomena and available measurements.

2021 ◽  
Vol 5 ◽  
Author(s):  
Sarah Geisen ◽  
Kiruba Krishnaswamy ◽  
Rob Myers

While the world is facing food and nutritional challenges leading to the multifaceted burden of malnutrition (underweight and overweight), there is a need to sustainably diversify and explore underutilized crops. Climate-resilient crops, which have the potential to withstand climate crises, have drought resistance, and provide healthy foods with essential vitamins and minerals. Ancient seed grains like amaranth, millets, and sorghum are highly nutritious seed grains that are underutilized, and there is a need for comprehensive research into their properties. This study will specifically investigate amaranth alongside barnyard, finger, kodo, little, pearl, proso millets, and sorghum. Physical and structural properties of the ancient seed grains can provide useful data for storage and food processing. The angle of repose, porosity, and water activity of the grains varied from 19.3° to 23.9°, 3.6 to 17.4%, and 0.533 to 0.660 at 25.5°C, respectively. Additionally, Scanning Electron Microscopy (SEM) was used to observe the surface characteristics and overall shape of each grain. SEM images of the millets shows the impact of dehulling on the surface morphology of the grains (little, barnyard, proso, and kodo millets). This calls for research and development of novel food processing technologies to minimize loss and damage during processing of climate-resilient crops.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 381
Author(s):  
Gautier Cesbron-Lavau ◽  
Aurélie Goux ◽  
Fiona Atkinson ◽  
Alexandra Meynier ◽  
Sophie Vinoy

During processing of cereal-based food products, starch undergoes dramatic changes. The objective of this work was to evaluate the impact of food processing on the starch digestibility profile of cereal-based foods using advanced imaging techniques, and to determine the effect of preserving starch in its native, slowly digestible form on its in vivo metabolic fate. Four different food products using different processing technologies were evaluated: extruded products, rusks, soft-baked cakes, and rotary-molded biscuits. Imaging techniques (X-ray diffraction, micro-X-ray microtomography, and electronic microscopy) were used to investigate changes in slowly digestible starch (SDS) structure that occurred during these different food processing technologies. For in vivo evaluation, International Standards for glycemic index (GI) methodology were applied on 12 healthy subjects. Rotary molding preserved starch in its intact form and resulted in the highest SDS content (28 g/100 g) and a significantly lower glycemic and insulinemic response, while the three other technologies resulted in SDS contents below 3 g/100 g. These low SDS values were due to greater disruption of the starch structure, which translated to a shift from a crystalline structure to an amorphous one. Modulation of postprandial glycemia, through starch digestibility modulation, is a meaningful target for the prevention of metabolic diseases.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1569
Author(s):  
Jesús Montejo-Gámez ◽  
Elvira Fernández-Ahumada ◽  
Natividad Adamuz-Povedano

This paper shows a tool for the analysis of written productions that allows for the characterization of the mathematical models that students develop when solving modeling tasks. For this purpose, different conceptualizations of mathematical models in education are discussed, paying special attention to the evidence that characterizes a school model. The discussion leads to the consideration of three components, which constitute the main categories of the proposed tool: the real system to be modeled, its mathematization and the representations used to express both. These categories and the corresponding analysis procedure are explained and illustrated through two working examples, which expose the value of the tool in establishing the foci of analysis when investigating school models, and thus, suggest modeling skills. The connection of this tool with other approaches to educational research on mathematical modeling is also discussed.


2021 ◽  
Vol 21 (5) ◽  
Author(s):  
Laura De Marchi ◽  
Andrea Wangorsch ◽  
Gianni Zoccatelli

Abstract Purpose of Review The recent introduction of edible insects in Western countries has raised concerns about their safety in terms of allergenic reactions. The characterization of insect allergens, the sensitization and cross-reactivity mechanisms, and the effects of food processing represent crucial information for risk assessment. Recent Findings Allergic reactions to different insects and cross-reactivity with crustacean and inhalant allergens have been described, with the identification of new IgE-binding proteins besides well-known pan-allergens. Depending on the route of sensitization, different potential allergens seem to be involved. Food processing may affect the solubility and the immunoreactivity of insect allergens, with results depending on species and type of proteins. Chemical/enzymatic hydrolysis, in some cases, abolishes immunoreactivity. Summary More studies based on subjects with a confirmed insect allergy are necessary to identify major and minor allergens and the role of the route of sensitization. The effects of processing need to be further investigated to assess the risk associated with the ingestion of insect-containing food products.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 101
Author(s):  
Cristiana Pereira ◽  
Regina Menezes ◽  
Vanda Lourenço ◽  
Teresa Serra ◽  
Carla Brites

Rice consumed as white cooked polished grain has been considered a high glycemic index (GI) food, particularly compared with other starchy foods. However, the GI levels of rice based food can vary among different rice types and food processing technologies. Rice GI variation can be affected by several factors, such as rice variety, the genetic background of rice as well as due to crop edaphoclimatic conditions. The main difference in rice starch composition that influences GI is the amylose content. Besides the chemical composition of rice, the gelatinization characteristics and food processing can also contribute to starch retrogradation, thus increasing the level of resistant starch with a great influence on GI. To understand the glycemic response of rice types differing in amylose and viscosity profiles, four rice samples were analyzed and compared with standard and resistant HI-MAIZE corn starches. An in vitro enzymatic starch hydrolysis procedure was applied to estimate GI. The results indicate substantial differences in the starch hydrolysis of the two corn starches. Starch hydrolysis tended to be more rapid and efficient for ‘Waxy’ and ‘Ceres’ (intermediate-amylose) rice types than for ‘Maçarico’ (high-amylose rice). In addition, the data show that the Maçarico variety has the lowest estimated GI and the highest retrogradation rate compared with ‘Waxy’, ‘Ceres’ and ‘Basmati’ type. The results obtained reinforce the importance of knowing amylose content and viscosity profiles for the prediction of rice glycemic responses.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Amit Halder ◽  
Ashish Dhall ◽  
Ashim K. Datta

Fundamental, physics-based modeling of complex food processes is still in the developmental stages. This lack of development can be attributed to complexities in both the material and transport processes. Society has a critical need for automating food processes (both in industry and at home) while improving quality and making food safe. Product, process, and equipment designs in food manufacturing require a more detailed understanding of food processes that is possible only through physics-based modeling. The objectives of this paper are (1) to develop a general multicomponent and multiphase modeling framework that can be used for different thermal food processes and can be implemented in commercially available software (for wider use) and (2) to apply the model to the simulation of deep-fat frying and hamburger cooking processes and validate the results. Treating food material as a porous medium, heat and mass transfer inside such material during its thermal processing is described using equations for mass and energy conservation that include binary diffusion, capillary and convective modes of transport, and physicochemical changes in the solid matrix that include phase changes such as melting of fat and water and evaporation/condensation of water. Evaporation/condensation is considered to be distributed throughout the domain and is described by a novel nonequilibrium formulation whose parameters have been discussed in detail. Two complex food processes, deep-fat frying and contact heating of a hamburger patty, representing a large group of common food thermal processes with similar physics have been implemented using the modeling framework. The predictions are validated with experimental results from the literature. As the food (a porous hygroscopic material) is heated from the surface, a zone of evaporation moves from the surface to the interior. Mass transfer due to the pressure gradient (from evaporation) is significant. As temperature rises, the properties of the solid matrix change and the phases of frozen water and fat become transportable, thus affecting the transport processes significantly. Because the modeling framework is general and formulated in a manner that makes it implementable in commercial software, it can be very useful in computer-aided food manufacturing. Beyond its immediate applicability in food processing, such a comprehensive model can be useful in medicine (for thermal therapies such as laser surgery), soil remediation, nuclear waste treatment, and other fields where heat and mass transfer takes place in porous media with significant evaporation and other phase changes.


Author(s):  
H. Fukanuma

Abstract Thermal spray layers are formed on rough surfaces; however, the flattening process on rough surfaces has not yet been clarified. A mathematical flattening model which takes into account the roughness of the substrate or previously coated layers is proposed in this paper. As a result of surface roughness, the flattening degree and the flattening time decrease with increasing surface roughness in this model. In addition, the characterization of surface roughness is introduced for the flattening model. Several calculated cases of the flattening model are shown.


Sign in / Sign up

Export Citation Format

Share Document