lipid nanocarriers
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 106)

H-INDEX

28
(FIVE YEARS 6)

OCL ◽  
2022 ◽  
Vol 29 ◽  
pp. 1
Author(s):  
Camille Dumont

Therapeutic peptides can treat a wide variety of diseases with selective and potent action. Their oral bioavailability is strongly limited by an important proteolytic activity in the intestinal lumen and poor permeation across the intestinal border. We have evaluated the capacity of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) to overcome both oral bioavailability limiting aspects, using leuprolide (LEU) as model peptide. Lipidization of LEU by formation of a hydrophobic ion pair (HIP) with sodium docusate enables a significant increase of peptide encapsulation efficiency in both SLN and NLC. The nanocarriers, obtained by high-pressure homogenization, measured 120 nm and were platelet shaped. Regarding the protective effect towards proteolytic degradation, only NLC maintained LEU integrity in presence of trypsin. Intestinal transport, evaluated on Caco-2 (enterocyte-like model) and Caco-2/HT29-MTX (mucin-secreting model) monolayers, showed nanocarriers internalization by enterocytes but no improvement of LEU permeability. Indeed, the combination of nanoparticles platelet-shape with the poor stability of the HIP in the transport medium induces a high burst release of the peptide, limiting nanoparticles capacity to transport LEU across the intestinal border. Stability of peptide lipidization needs to be improved to withstand biorelevant medium to benefit from the advantages of encapsulation in solid lipid nanocarriers and consequently improve their oral bioavailability.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Rania S. Abdel-Rashid ◽  
Eman S. El-leithy ◽  
Raghda Abdel-monem

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eunhye Yang ◽  
Hyunjong Yu ◽  
SungHak Choi ◽  
Kyung-Min Park ◽  
Ho-Sup Jung ◽  
...  

AbstractWe designed a novel lyophilization method using controlled rate slow freezing (CSF) with lyoprotective agent (LPA) to achieve intact lipid nanovesicles after lyophilization. During the freezing step, LPA prevented water supercooling, and the freezing rate was controlled by CSF. Regulating the freezing rate by various liquid media was a crucial determinant of membrane disruption, and isopropanol (freezing rate of 0.933 °C/min) was the optimal medium for the CSF system. Lyophilized lipid nanovesicle using both CSF and LPA retained 92.9% of the core material and had uniform size distributions (Z-average diameter = 133.4 nm, polydispersity index = 0.144), similar to intact vesicles (120.7 nm and 0.159, respectively), after rehydration. Only lyophilized lipid nanovesicle using both CSF and LPA showed no changes in membrane fluidity and polarity. This lyophilization method can be applied to improve storage stability of lipid nanocarriers encapsulating drugs while retaining their original activity.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3035
Author(s):  
Teodora-Alexandra Iordache ◽  
Nicoleta Badea ◽  
Mirela Mihaila ◽  
Simona Crisan ◽  
Anca Lucia Pop ◽  
...  

There is ongoing research on various herbal bioactives and delivery systems which indicates that both lipid nanocarriers and herbal medicines will be fine tunned and integrated for future bio-medical applications. The current study was undertaken to systematically develop NLC-DSG-yam extract for the improved efficacy of herbal Diosgenin (DSG) in the management of anti-inflammatory disorders. NLCs were characterized regarding the mean size of the particles, morphological characteristics, physical stability in time, thermal behaviour, and entrapment efficiency of the herbal bioactive. Encapsulation efficiency and in vitro antioxidant activity measured the differences between the individual and dual co-loaded-NLC, the co-loaded one assuring a prolonged controlled release of DSG and a more emphasized ability of capturing short-life reactive oxygen species (ROS). NLCs safety properties were monitored following the in vitro MTS ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay) and RTCA (Real-Time Cell Analysis) assays. Concentrations less than 50 μg/mL showed no cytotoxic effects during in vitro cytotoxicity assays. Besides, the NLC-DSG-yam extract revealed a great anti-inflammatory effect, as the production of pro-inflammatory cytokines (TNF-alpha, IL-6) was significantly inhibited at 50 μg/mL NLC (e.g., 98.2% ± 1.07 inhibition of TNF-α, while for IL-6 the inhibition percentage was of 62% ± 1.07). Concluding, using appropriate lipid nanocarriers, the most desirable properties of herbal bioactives could be improved.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5619
Author(s):  
Eliana B. Souto ◽  
Ana L. R. de Souza ◽  
Fernanda K. dos Santos ◽  
Elena Sanchez-Lopez ◽  
Amanda Cano ◽  
...  

Hyperproliferative skin diseases (HSD) are a group of diseases that include cancers, pre-cancerous lesions and diseases of unknown etiology that present different skin manifestations in terms of the degree and distribution of the injuries. Anti-proliferative agents used to treat these diseases are so diverse, including 5-aminolevulinic acid, 5-fluorouracil, imiquimod, methotrexate, paclitaxel, podophyllotoxin, realgar, and corticosteroids in general. These drugs usually have low aqueous solubility, which consequently decreases skin permeation. Thus, their incorporation in lipid nanocarriers has been proposed with the main objective to increase the effectiveness of topical treatment and reduce side effects. This manuscript aims to describe the advantages of using lipid nanoparticles and liposomes that can be used to load diversity of chemically different drugs for the treatment of HSD.


Author(s):  
Manasa Manjunath Hegde ◽  
Suma Prabhu ◽  
Srinivas Mutalik ◽  
Abhishek Chatterjee ◽  
Jayant S. Goda ◽  
...  

Abstract Background Glioblastoma, or glioblastoma multiforme (GBM), remains a fatal cancer type despite the remarkable progress in understanding the genesis and propagation of the tumor. Current treatment modalities, comprising mainly of surgery followed by adjuvant chemoradiation, are insufficient for improving patients' survival owing to existing hurdles, including the blood–brain barrier (BBB). In contemporary practice, the prospect of long-term survival or cure continues to be a challenge for patients suffering from GBM. This review provides an insight into the drug delivery strategies and the significant efforts made in lipid-based nanoplatform research to circumvent the challenges in optimal drug delivery in GBM. Area covered Owing to the unique properties of lipid-based nanoplatforms and advancements in clinical translation, this article describes the application of various stimuli-responsive lipid nanocarriers and tumor subcellular organelle-targeted therapy to give an idea about the strategies that can be applied to enhance site-specific drug delivery for GBM. Furthermore, active targeting of drugs via surface-modified lipid-based nanostructures and recent findings in alternative therapeutic platforms such as gene therapy, immunotherapy, and multimodal therapy have also been overviewed. Expert opinion Lipid-based nanoparticles stand out among the other nanocarriers explored for GBM drug delivery, as they support both passive and active drug targeting by crossing/bypassing the BBB at the same time minimizing toxicity and projects better pharmacological parameters. Although these nanocarriers could be a plausible choice for treating GBM, in-depth research is essential to advance neuro-oncology research and enhance outcomes in patients with brain tumors.


2021 ◽  
Vol 18 (117) ◽  
pp. 277-287
Author(s):  
Fakhri Shahidi ◽  
Shadi Blourian ◽  
Sayed Ali Mortazavi ◽  
Mohebbat mohebbi ◽  
Abdolreza Bagheri ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5989
Author(s):  
Giuseppina Ioele ◽  
Fedora Grande ◽  
Michele De Luca ◽  
Maria Antonietta Occhiuzzi ◽  
Antonio Garofalo ◽  
...  

The present paper provides an updated overview of the methodologies applied in photodegradation studies of non-steroidal anti-inflammatory drugs. Photostability tests, performed according to international standards, have clearly demonstrated the photolability of many drugs belonging to this class, observed during the preparation of commercial forms, administration or when dispersed in the environment. The photodegradation profile of these drugs is usually monitored by spectrophotometric or chromatographic techniques and in many studies the analytical data are processed by chemometric procedures. The application of multivariate analysis in the resolution of often-complex data sets makes it possible to estimate the pure spectra of the species involved in the degradation process and their concentration profiles. Given the wide use of these drugs, several pharmaceutical formulations have been investigated to improve their photostability in solution or gel, as well as the pharmacokinetic profile. The use of lipid nanocarriers as liposomes, niosomes or solid lipid nanoparticles has demonstrated to both minimize photodegradation and improve the controlled release of the entrapped drugs.


Sign in / Sign up

Export Citation Format

Share Document