Cost Analysis for the Renewable Energy Generation to meet the Energy Security in Bangladesh

2021 ◽  
Vol 7 (3) ◽  
Author(s):  
Shakib Hassan Eon ◽  
Shakib Hassan Eon ◽  
Shakib Hassan Eon

Renewable energy generation is no more an alternative rather it becomes a choice for the power generation to meet the upcoming energy demand. Considering the non- renewable energy unavailability, as well as, the environmental impact, renewable energy should be the first choice. Most of the power generation in Bangladesh comes from nonrenewable energy and a noticeable amount of energy is imported from abroad. As a developing country, it is not cost-efficient and never ensures energy security. To ensure long-term energy security, it is time to shift power generation from nonrenewable to renewable energy generation. This paper presents an approximate calculation for the renewable power generating plant cost and returning year. The cost calculation is done in the context of Bangladesh.

2021 ◽  
Author(s):  
K.S.L. Mendis ◽  
◽  
K.G.A.S. Waidyasekara ◽  
S.S.C. Ginthotavidana ◽  
◽  
...  

The escalation of global energy demand has enhanced the interest on renewable energy technologies worldwide. The reliance of a single energy source has become problematic, and hybrid renewable energy technology has been identified as a feasible solution. Producing energy to limitless increasing demand is a challenging issue faced by Sri Lanka nowadays. Although, there are some studies carried out for renewable energy systems, solar-wind based hybrid renewable systems is an understudied area in Sri Lankan context. Hence, this paper aims to explore the applicability of hybrid solar-wind renewable energy generation approach for Sri Lanka. The study follows a qualitative approach with semi structured interviews from eight industrial experts, and manual content analysis technique was used for data analysis. The paper discussed the current installation practices of solar and wind technologies, applicability of hybrid solar and wind renewable energy systems and national level contribution for hybrid systems. Finally, a validated model was proposed to implement hybrid renewable energy generation systems for Sri Lanka.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1333 ◽  
Author(s):  
Diego Francisco Larios ◽  
Enrique Personal ◽  
Antonio Parejo ◽  
Sebastián García ◽  
Antonio García ◽  
...  

The complexity of power systems is rising mainly due to the expansion of renewable energy generation. Due to the enormous variability and uncertainty associated with these types of resources, they require sophisticated planning tools so that they can be used appropriately. In this sense, several tools for the simulation of renewable energy assets have been proposed. However, they are traditionally focused on the simulation of the generation process, leaving the operation of these systems in the background. Conversely, more expert SCADA operators for the management of renewable power plants are required, but their training is not an easy task. SCADA operation is usually complex, due to the wide set of information available. In this sense, simulation or co-simulation tools can clearly help to reduce the learning curve and improve their skills. Therefore, this paper proposes a useful simulator based on a JavaScript engine that can be easily connected to any renewable SCADAs, making it possible to perform different simulated scenarios for novel operator training, as if it were a real facility. Using this tool, the administrators can easily program those scenarios allowing them to sort out the lack of support found in setting up facilities and training of novel operator tasks. Additionally, different renewable energy generation models that can be implemented in the proposed simulator are described. Later, as a use example of this tool, a study case is also performed. It proposes three different wind farm generation facility models, based on different turbine models: one with the essential generation turbine function obtained from the manufacturer curve, another with an empirical model using monotonic splines, and the last one adding the most important operational states, making it possible to demonstrate the usefulness of the proposed simulation tool.


Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 171 ◽  
Author(s):  
Hua Zhou ◽  
Huahua Wu ◽  
Chengjin Ye ◽  
Shijie Xiao ◽  
Jun Zhang ◽  
...  

With the rapid growth of renewable energy generation, it has become essential to give a comprehensive evaluation of renewable energy integration capability in power systems to reduce renewable generation curtailment. Existing research has not considered the correlations between wind power and photovoltaic (PV) power. In this paper, temporal and spatial correlations among different renewable generations are utilized to evaluate the integration capability of power systems based on the copula model. Firstly, the temporal and spatial correlation between wind and PV power generation is analyzed. Secondly, the temporal and spatial distribution model of both wind and PV power generation output is formulated based on the copula model. Thirdly, aggregated generation output scenarios of wind and PV power are generated. Fourthly, wind and PV power scenarios are utilized in an optimal power flow calculation model of power systems. Lastly, the integration capacity of wind power and PV power is shown to be able to be evaluated by satisfying the reliability of power system operation. Simulation results of a modified IEEE RTS-24 bus system indicate that the integration capability of renewable energy generation in power systems can be comprehensively evaluated based on the temporal and spatial correlations of renewable energy generation.


2021 ◽  
Vol 23 (06) ◽  
pp. 1128-1140
Author(s):  
Zahira Tabassum ◽  
◽  
Dr.Chandrashekhar Shastry ◽  

Excessive use of traditional energy sources such as fossil fuels has resulted in significant environmental deterioration. India is one of the world’s fastest-growing energy consumers, and it is making continual efforts to increase renewable energy generation. The use of renewable energy sources to generate electricity is expanding every day. Renewable energy integration with existing power systems is a difficult endeavor that necessitates strategy and development. Climate-friendly energy systems will result from the use of renewable energy sources in power generation, as they lower CO2 emissions caused by fossil fuels used in conventional power generation. This research looks at a renewable energy scenario using Gujarat as a case study, which is a leader in renewable energy generation. The policies taken by the Gujarat government to increase renewable energy’s participation in the energy mix, as well as the challenges and potential solutions for boosting the deployment of renewable energy sources across Gujarat, are discussed. This study can be used as a guide for policymakers and researchers in other states and around the world who want to boost renewable energy share.


2020 ◽  
Vol 8 (5) ◽  
pp. 3578-3585

The energy sector is moving towards renewable energy generation. Renewable energy generation is the key technology for a smart grid operation. These renewable producers’ electricity generation capacity varies significantly with change in weather conditions and causes system unreliability. To improve acceptability of this intermittency either renewable generation should be such that it meets the load demand round the corner or there should be a successful coordination between renewable power generation and the grid, so that consumer gets a reliable and cost efficient power. This paper presents a computer-based model of a multi-agent Smart Grid Controller (SGC). The design objective is to provide reliable and cost optimized electricity to the consumers. The Smart Grid Controller continuously monitors the power availability and demand on hourly basis and switches between price-based demand fulfilment and priority-based demand fulfilment algorithm accordingly. Two case studies – Renewable with Grid Power (RwGP) and Renewable without Grid Power (RwoGP) are taken into consideration. The design is validated on the data of a township. The impact of normal and extreme weather conditions on renewable producer agent’s operating capacity is simulated. System’s performance is analysed on daily and monthly data. Results show that the model not only is reliable but also provides cost optimized solution to consumers as compared to only Grid supplied system.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2354
Author(s):  
Younes Zahraoui ◽  
M. Reyasudin Basir Khan ◽  
Ibrahim AlHamrouni ◽  
Saad Mekhilef ◽  
Mahrous Ahmed

Energy demand has been overgrowing in developing countries. Moreover, the fluctuation of fuel prices is a primary concern faced by many countries that highly rely on conventional power generation to meet the load demand. Hence, the need to use alternative resources, such as renewable energy, is crucial in order to mitigate fossil fuel dependency, while ensuring reductions in carbon dioxide emissions. Algeria—being the largest county in Africa—has experienced a rapid growth in energy demand over the past decade due to the significant increase in residential, commercial, and industry sectors. Currently, the hydrocarbon-rich nation is highly dependent on fossil fuels for electricity generation, with renewable energy only having a small contribution to the country’s energy mix. However, the country has massive potential for renewable energy generation, such as solar, wind, biomass, geothermal, and hydropower. Therefore, the government aims to diversify away from fossil fuels and promote renewable energy generation through policies and renewable energy-related programs. The country’s Renewable Energy and Energy Efficiency Development Plan focuses on large scale solar, wind generation as well as geothermal and biomass technologies. This paper provides an update on the current energy position and renewable energy status in Algeria. Moreover, this paper discusses renewable energy (RE) policies and programs that aim to increase the country’s renewable energy generation and its implementation status.


Author(s):  
Takeharu Hasegawa

Abstract Europe and the United States, in particular, promote the deregulation of the electric power industry in favor of renewable energy generation. With an increase in renewable energy generation, thermal power generation has been switched to standby power. Ammonia, one of the storage and transport media for H2, is produced in a highly efficient oxyfuel IGCC (integrated coal gasification combined cycle) system with CO2 capture, for the future hydrogen-using society. Using ammonia as an industrial raw material, agricultural fertilizer, and transportation fuel, energy system can be established by combining renewable energy and thermal power generation. Therefore, it is possible to simultaneously construct a thermal power supply system suitable for backup power source owing to the fluctuation of the renewable power generation and to realize improvement of availability of the thermal power plant and the load-leveling. It will be an incentive to build a future zero-emission thermal power plant. In this study, an oxy-fuel IGCC power generation co-produced with ammonia and CO2 capture is proposed. Furthermore, the features and challenges of a gas turbine that fuels CO2-free NH3 are investigated. In particular, the combustion exhaust characteristics of ammonia/oxygen fired semiclosed cycle gas turbine combustor in comparison with those of the conventional fuels are clarified through a kinetic analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiaojuan Lu ◽  
Leilei Cheng

With the advent of the new types of electrical systems that attach more importance to the renewability of the energy resource, issues arising out of the randomness and volatility of the renewable energy resource, such as the safety, reliability, and economic operation of the underlying power generation system, are expected to be challenging. Generally speaking, the power generation company can do a reasonable dispatch of each unit according to weather forecast and load demand information. Focusing on concentrating solar power (CSP) plants (wind power, photovoltaic, battery energy storage, and thermal power plants), this paper proposes a day-ahead scheduling model for renewable energy generation systems. The model also considers demand response and related generator set constraints. The problem is described as a mixed-integer nonlinear programming (MINLP) problem, which can be solved by the CPLEX solver to obtain an optimal solution. At the same time, the paper compares and analyzes the impact of concentrating solar power plants on other renewable energy generation and thermal power operation systems. The results show that the renewable energy generation system can lower power generation costs, reduce load fluctuation, and enhance the energy storage rate.


Sign in / Sign up

Export Citation Format

Share Document