A Review of Renewable Energy Strategies in Achieving Energy Efficient Buildings in Nigeria

Author(s):  
Ayeni Dorcas. A. ◽  
Ola Omobolanle A.
Solar Energy ◽  
2005 ◽  
Author(s):  
William Young

Hurricanes, floods, tornados and earthquakes create natural disasters that can destroy homes, businesses and the natural environment. Such disasters can happen with little or no warning, leaving hundreds or even thousands of people without medical services, potable water, sanitation, communications and electrical services for up to several weeks. The 2004 hurricane season ravaged the State of Florida, U.S.A., with four major hurricanes within a 6-week timeframe. Over nine million people evacuated their homes and damage to property was extensive. One proactive strategy to minimize this type of destruction and disruption to lives is the implementation of disaster-resistant buildings that are functional and operational. This approach uses the best energy-efficient buildings, fortified to the latest codes, and incorporates renewable energy systems. Businesses, government facilities and homes benefit from using photovoltaics to power critical items. This concept is a mitigation tool to reduce damage and cost of the destructive forces of hurricanes and other disasters. This past season’s experience showed that buildings designed and built to the latest standards with photovoltaic and solar thermal systems survived with little damage and continued to perform after the storm passed. Even following a disaster, energy conservation and use of renewables promotes energy assurance while allowing occupants to maintain some resemblance of a normal life.


2011 ◽  
Vol 224 ◽  
pp. 104-108
Author(s):  
Ya Guang Sun

Current social development is pressing for energy efficient buildings. The trend of consistent updating of energy-efficient building technology reflects the importance and urgency of energy efficiency in buildings. Through analysis on the current situation of building development, it can be obtained that the energy efficient buildings as well as utilization of renewable energy sources in buildings will be bound to be one of main topics for discussion in future building design.


Residential buildings are the significant energy consumer of the India which is about 24% of the total energy consumption. Energy efficient buildings are the ideal solution to reduce energy consumption in the building sector. The energy efficient buildings can be achieved by incorporating passive features or renewable energy systems or both. The current work aims to perform a retrofitting analysis of an existing building into an energy efficient building. For performing the energy analysis REVIT 2017 tool is used. Using the REVIT 2017 tool building model is developed, building information are loaded and energy analyses are performed. The building is analyzed as two cases. The first case is to estimate energy performance of the existing building. The second case is to incorporate passive features and renewable energy system to the building and evaluate the energy performance. Existing building Energy Usage Intensity (EUI) was 193 kWh/m2 /year. When passive features (Insulation, additional window glazing and efficient air conditioning systems) alone incorporated to the building the building EUI is reduced to 138 kWh/m2 /year. Along with Passive features Photovoltaic modules with different efficiencies 16%, 18% and 20% are considered for renewable energy generation. The energy generation for the different PV modules for three different roof area (40%, 60% and 70% of total roof area) is evaluated. The energy usage intensity varies from 11.4 from -150 kWh/m2 /year for the combination of different efficiency of PV module and the different % of roof area covered. The negative sign indicates the energy generation after the required energy usage. The payback period for only incorporating passive features is 6.3 years and while incorporating PV system with passive features is 9 years.


Akustika ◽  
2020 ◽  
pp. 2-7
Author(s):  
Marián Flimel

Energy-efficient buildings utilise the potential of renewable sources, among which heat pumps hold an important position. As this technology has a secondary effect on the environment through its noise immission, locations of outdoor units in the exterior should be subjected to the assessment. The present article deals with the options of placing heat pumps in the exterior and the placement assessment methods. The noise burden identification through the assessment of the time exposure is presented in the example of an in situ measurement.


2021 ◽  
pp. 100101
Author(s):  
Nikolay Aleksandrovich Tsvetkov ◽  
Aleksandr Vital'yevich Tolstykh ◽  
Andrey Nikolaevich Khutornoi ◽  
Stanislav Boldyryev ◽  
Anna Vladimirovna Kolesnikova ◽  
...  

2021 ◽  
Vol 9 (4) ◽  
pp. 105444
Author(s):  
Ilia Yarmoshenko ◽  
Georgy Malinovsky ◽  
Aleksey Vasilyev ◽  
Aleksandra Onishchenko

Sign in / Sign up

Export Citation Format

Share Document