CHLOROGENIC ACID – APPLICATION OF CONTEMPORARY DENSITY FUNCTIONALS TO A SINGLE MOLECULE

2021 ◽  
Author(s):  
Svetlana Marković ◽  
◽  
Jelena Tošović ◽  

Although chlorogenic acid (5-O-caffeoylquinic acid, 5CQA) is a dietary phenol known for its pharmacological and nutritional properties, its structural features and mechanisms of oxidative action have not been completely elucidated. Clarification of the 5CQA structure was conducted by comparing the experimental and simulated IR, Raman, 1H-NMR, 13C-NMR, and UV spectra. For this purpose, a comprehensive conformational analysis of 5CQA was performed to reveal its most stable conformations in the gas-state and solution. Excellent agreement between all experimental and simulated spectra indicates correct arrangement of the atoms in the 5CQA molecule. In addition, the most stable conformation in solution coincides with that predicted with sophisticated NMR experiments. The quantum mechanics–based test for overall free-radical scavenging activity was applied for the investigation of antioxidative capacity of 5CQA relative to trolox (6-hydroxy-2,5,7,8- tetramethylchroman-2-carboxylic acid, Tx) as a reference compound. Hydrogen atom transfer (HAT), radical adduct formation (RAF), sequential proton loss electron transfer (SPLET), and single electron transfer – proton transfer (SET-PT) reactions of 5CQA and Tx with HO· and CH3OO· radicals were examined in benzene, pentyl ethanoate, and basic aqueous solutions. In non-polar solvents 5CQA reacts with HO· via HAT and RAF mechanisms, whereas HAT is the only reaction pathway with CH3OO·. At physiological conditions 5CQA exists in the form of monoanion and dianion. Both anionic forms undergo only HAT mechanism with CH3OO·. With HO·, the anions conform to the HAT, RAF, SPLET, and SET-PT mechanisms. Because all reactions of dianion are diffusion controlled, its contribution to scavenging HO· is comparable to that of more abundant monoanion. The calculated rate constant for overall reaction of 5CQA with HO· is in perfect agreement with the corresponding experimental value. The order of reactivity toward selected free radicals is the same in nonpolar and polar solutions: in comparison to Tx, 5CQA is more reactive toward HO·, but less reactive toward CH3OO·. Very good agreement between the experimental and calculated results confirms the ability of contemporary density functionals to quantify subtle physico-chemical interactions.

2020 ◽  
Vol 19 (08) ◽  
pp. 2050032
Author(s):  
Hadjer Mansouri ◽  
Sidi Mohamed Mekelleche

The aim of this work is to perform a computational study of the radical scavenging activity of a series of common hydroxycinnamic acids (HCAs) in polar and nonpolar solvents in order to rationalize the experimental order obtained in ethanol and to analyze the solvent effect on mechanism and radical scavenging capacity. The thermodynamics of the main mechanisms, namely, hydrogen atom transfer (HAT), sequential proton loss followed by electron transfer (SPLET), and single electron transfer followed by proton transfer (SET-PT) were investigated at the M05-2X/6-31[Formula: see text]G([Formula: see text]) level of theory using the SMD solvation model. This study shows that the SET-PT mechanism is disfavored in all media, whereas HAT is the most thermodynamically favored mechanism in gas phase and SPLET is the preferred reaction pathway in pentyl ethanoate, ethanol and water. The thermodynamically preferred site of antioxidant action and the radical scavenging order are predicted using the BDE[Formula: see text] and (PA[Formula: see text]ETE)[Formula: see text] descriptors corresponding to the HAT and SPLET mechanisms, respectively. The obtained results point out that the mechanism and the radical scavenging potency are influenced by solvent polarity and our predictions are in agreement with the experimental measurements performed in ethanol giving the following descending order: caffeic [Formula: see text] [Formula: see text] [Formula: see text]-coumaric acid. Our results also show that the ortho substitution of caffeic acid by strong electron donating groups leads to a notable increase of their radical scavenging activity and new potent HCA derivatives are designed.


2013 ◽  
Vol 67 (11) ◽  
Author(s):  
Zoran Marković ◽  
Jelena Đorović ◽  
Milan Dekić ◽  
Milanka Radulović ◽  
Svetlana Marković ◽  
...  

AbstractAntioxidant activity of erodiol was examined at the M05-2X/6-311+G(d,p) level of theory in the gas and aqueous phases. The structure and energy of radicals and anions of the most stable erodiol rotamer were analyzed. To estimate antioxidant potential of erodiol, different molecular properties were examined: bond dissociation enthalpy, proton affinity together with electron transfer energy, and ionization potential followed by proton dissociation enthalpy. It was found that hydrogen atom transfer is the prevailing mechanism of erodiol behavior in gas; whereas single electron transfer followed by proton transfer and sequential proton loss electron transfer mechanisms represent the thermodynamically preferred reaction paths in water.


2019 ◽  
Vol 20 (2) ◽  
pp. 397 ◽  
Author(s):  
Yan-Zhen Zheng ◽  
Geng Deng ◽  
Rui Guo ◽  
Da-Fu Chen ◽  
Zhong-Min Fu

Understanding the role of substituents is of great importance for the preparation of novel phenolic compounds with enhanced antioxidative properties. In this work, the antioxidative activity of isoflavonoid derivatives with different substituents placed at the C2 position was determined by density functional theory (DFT) calculations. The bond dissociation enthalpy (BDE), ionization potential (IP), and proton affinity (PA) related to hydrogen atom transfer (HAT), single electron transfer-proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) mechanisms were calculated. The strongest antioxidative group of isoflavonoid is not altered by the substituents. Excellent correlations were found between the BDE/IP/PA and Hammett sigma constants. Equations obtained from linear regression can be useful in the selection of suitable candidates for the synthesis of novel isoflavonoids derivatives with enhanced antioxidative properties. In the gas and benzene phases, the electron-donating substituents would enhance the antioxidative activity of isoflavonoids via weakening the BDE of 4′−OH. In water phase, they will reduce the antioxidative by strengthening the PA of 7−OH. Contrary results occur for the electron-withdrawing groups. In addition, the electronic effects of substituents on the BDE/IP/PA have also been analyzed.


Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 590 ◽  
Author(s):  
Huakang Zhou ◽  
Xiangzhou Li ◽  
Yaxuan Shang ◽  
Kai Chen

Puerarin is a C-glycoside of daidzein, one of the major bioactive ingredients isolated from the root of Pueraria lobata, which has a wide spectrum of pharmacological effects. Although puerarin is well-known for its effective antioxidant activity, there is seldom a systematic theoretical study on its radical scavenging activity. Herein, the free radical scavenging ability of puerarin was investigated systematically by density functional theory (DFT) calculations. The reaction activity was compared with daidzein as well. Three reaction pathways: hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) were discussed and compared by thermodynamic parameters such as bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE). The reaction kinetics of puerarin with special radicals •OH and •OOH were also studied. The results obtained may be of great significance for better understanding the relationship between the antioxidant properties and structural design of puerarin, as well as other antioxidants.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Dejan Milenković ◽  
Jelena Đorović ◽  
Svetlana Jeremić ◽  
Jasmina M. Dimitrić Marković ◽  
Edina H. Avdović ◽  
...  

In order to evaluate the free radical scavenging potency of dihydroxybenzoic acids (DHBAs) the Density Functional Theory (DFT) was used. The M05-2X/6-311++G(d,p) and B3LYP-D2/6-311++G(d,p) theoretical models were applied. Three possible antioxidant mechanisms were examined: hydrogen atom transfer (HAT), single-electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) mechanisms. All of these mechanisms have been studied in nonpolar (benzene and pentylethanoate) and polar solvents (water) using an implicit solvation model (SMD). The following thermodynamic quantities related to these mechanisms were calculated: bond dissociation enthalpy (BDE), ionization potential (IP), and proton affinity (PA). The obtained results indicated the HAT mechanism as the most favourable reaction pathway for antioxidative action of DHBAs in benzene. On the other hand, SPLET is indicated as predominant reaction mechanism in polar solvent. The SET-PT mechanism was not favourable reaction path for antioxidative action in any of the solvents under investigation.


2021 ◽  
Author(s):  
Thi Hoai Nam Doan ◽  
Thi Le Anh Nguyen ◽  
Nguyen Thi Ai Nhung ◽  
Duong Tuan Quang ◽  
Duy Quang Dao

Antioxidant and UV absorption activities of three aaptamine derivatives including piperidine[3,2-b]demethyl(oxy)aaptamine (C1), 9-amino-2-ethoxy-8-methoxy-3H-benzo[de][1,6]naphthyridine-3-one (C2), and 2-(sec-butyl)-7,8-dimethoxybenzo[de]imidazo[4,5,1-ij][1,6]-naphthyridin-10(9H)-one (C3) were theoretically studied by density functional theory (DFT). Optimized geometries of C1C3 and theirs intrinsic thermochemical properties such as bond dissociation energy, proton affinity, and ionization potential were calculated at DFT/M05-2X/6-311++G(d,p) level of theory in vacuo and in water. The results show that C1C3 exhibited similar potent antioxidant activities, which are comparable to well-known antioxidants such as Trolox or cembrene. The radical scavenging activity of the antioxidants were then investigated by evaluation the Gibbs free energy (ΔrG0) of the reaction between C1C3 and the HOO●/HO● radicals via four mechanisms, including: hydrogen atom transfer (HAT), single electron transfer (SET), proton loss (PL) and radical adduct formation (RAF). Kinetic calculation reveals that HOO● scavenging in water is occurred via HAT mechanism with C1@C19 while RAF is more dominant with C2 and C3. Antioxidant activity of aaptamine derivatives can be classified as C1 > C3 > C2. In addition, all compounds are active in UV-Vis absorption; the excitations of which are determined as π-π* transition. Overall, the results suggest the potential applications of the aaptamines in pharmaceutics and cosmetics, i.e. as sunscreen and antioxidant ingredient<br>


2019 ◽  
Vol 20 (19) ◽  
pp. 4735 ◽  
Author(s):  
Anja Harej ◽  
Andrijana Meščić Macan ◽  
Višnja Stepanić ◽  
Marko Klobučar ◽  
Krešimir Pavelić ◽  
...  

The novel 4-substituted 1,2,3-triazole L-ascorbic acid (L-ASA) conjugates with hydroxyethylene spacer as well as their conformationally restricted 4,5-unsaturated analogues were synthesized as potential antioxidant and antiproliferative agents. An evaluation of the antioxidant activity of novel compounds showed that the majority of the 4,5-unsaturated L-ASA derivatives showed a better antioxidant activity compared to their saturated counterparts. m-Hydroxyphenyl (7j), p-pentylphenyl (7k) and 2-hydroxyethyl (7q) substituted 4,5-unsaturated 1,2,3-triazole L-ASA derivatives exhibited very efficient and rapid (within 5 min) 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging activity (7j, 7k: IC50 = 0.06 mM; 7q: IC50 = 0.07 mM). In vitro scavenging activity data were supported by in silico quantum-chemical modelling. Thermodynamic parameters for hydrogen-atom transfer and electron-transfer radical scavenging pathways of anions deprotonated at C2-OH or C3-OH groups of L-ASA fragments were calculated. The structure activity analysis (SAR) through principal component analysis indicated radical scavenging activity by the participation of OH group with favorable reaction parameters: the C3-OH group of saturated C4-C5(OH) derivatives and the C2-OH group of their unsaturated C4=C5 analogues. The antiproliferative evaluation showed that p-bromophenyl (4e: IC50 = 6.72 μM) and p-pentylphenyl-substituted 1,2,3-triazole L-ASA conjugate (4k: IC50 = 26.91 μM) had a selective cytotoxic effect on breast adenocarcinoma MCF-7 cells. Moreover, compound 4e did not inhibit the growth of foreskin fibroblasts (IC50 > 100 μM). In MCF-7 cells treated with 4e, a significant increase of hydroxylated hypoxia-inducible transcription factor 1 alpha (HIF-1α) expression and decreased expression of nitric oxide synthase 2 (NOS2) were observed, suggesting the involvement of 4e in the HIF-1α signaling pathway for its strong growth-inhibition effect on MCF-7 cells.


2019 ◽  
Vol 92 (3) ◽  
pp. 337-346
Author(s):  
Raluca Pop

The antioxidant properties of six flavonols -fisetin, galangin, gossipetin, kaempferol, morin and myricetin- have been investigated at HF/6-311G+(d,p) level of theory, using ethanol as solvent. Three known antioxidant mechanisms, namely HAT (hydrogen atom transfer), SET-PT (single electron transfer followed by proton transfer) and SPLET (sequential proton loss electron transfer) have been employed in order to evaluate the radical scavenging abilities of the investigated compounds. Thermodynamic parameters like bond dissociation energy (BDE), proton affinity (PA), electron transfer enthalpy (ETE), ionization potential (IP) and proton dissociation enthalpy (PDE) were calculated and the results were associated with the number and the positions of the hydroxyl groups, the geometry of the parent molecule and of the corresponding radicals, as well as with the electron spin distribution. Also, computations of global reactivity descriptors like HOMO-LUMO gap showed that an increased reactivity is related to the presence of the catechol moiety (gossipetin, myricetin, fisetin). The influence of the catecholic OH groups is also outlined by the HOMO energies, highest electron-donor ability being obtained for gossipetin, the flavonol with two catecholic moieties on rings A and B. According to the HAT mechanism, it has been outlined an enhanced antioxidant character of the 3-OH groups, followed by the hydroxyl groups attached to the phenyl ring B. The calculated values of the condensed Fukui functions, computed for a radical attack, are in good agreement with the above-mentioned results.


2012 ◽  
Vol 189 ◽  
pp. 225-231
Author(s):  
Xiang Peng Guo ◽  
Rui Fa Jin

The structural and electronic properties of alkannin and its derivatives and their radicals were investigated at density functional level. It turned out that the presence of the dihydroxy functionality increases the radical stability through hydrogen bond formation. The hydrogen atom transfer for alkannin derivatives is difficult to occur compared with zero compound phenol. However, alkannin derivatives appear to be good candidates for the one-electron-transfer, particularly for alkannin derivatives with –OCOCH=CH(CH3)2 and –OCOCH2CH(CH3)2 groups. It suggests that 1–7 are expected to be the promising candidates for radical scavenging activity compounds because The ionization potential (IP) values of 1–7 are lower than that of the zero compound phenol.


Sign in / Sign up

Export Citation Format

Share Document