scholarly journals BURNING MODES OF A BIPOLAR PULSED DISCHARGE IN CO2

2020 ◽  
pp. 159-164
Author(s):  
V.A. Lisovskiy ◽  
S.V. Dudin ◽  
M.M. Vusyk ◽  
V.D. Yegorenkov

We have studied the burning modes of the bipolar pulsed discharge in CO2 within the frequency range between 20 and 300 kHz and the duty cycle of 11...97 %. The current and voltage waveforms within the pressure range between 0.1 to 1 Torr were registered. We have established that the duty cycle values may affect the axial structure of the discharge considerably causing the voltage drop redistribution across the electrodes. The bipolar pulsed discharge may burn in a high-current mode (with cathode sheaths near every electrode) as well as in a low-current one (with a low discharge current and weak glow). The transition between these modes may be observed at high duty cycle values. We have found that one may make a shift of the complete oscilloscope voltage pattern higher or lower along the voltage axis and produce a self-bias constant voltage the value and sign of which depend on the duty cycle, amplitude and frequency of the applied voltage.

2002 ◽  
Vol 73 (2) ◽  
pp. 1007-1007
Author(s):  
M. P. Stockli ◽  
R. Welton ◽  
M. Janney ◽  
R. Lauf ◽  
R. Gough ◽  
...  

Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 76
Author(s):  
Mikhail K. Khodzitsky ◽  
Petr S. Demchenko ◽  
Dmitry V. Zykov ◽  
Anton D. Zaitsev ◽  
Elena S. Makarova ◽  
...  

The terahertz frequency range is promising for solving various practically important problems. However, for the terahertz technology development, there is still a problem with the lack of affordable and effective terahertz devices. One of the main tasks is to search for new materials with high sensitivity to terahertz radiation at room temperature. Bi1−xSbx thin films with various Sb concentrations seem to be suitable for such conditions. In this paper, the terahertz radiation influence onto the properties of thermoelectric Bi1−xSbx 200 nm films was investigated for the first time. The films were obtained by means of thermal evaporation in vacuum. They were affected by terahertz radiation at the frequency of 0.14 terahertz (THz) in the presence of thermal gradient, electric field or without these influences. The temporal dependencies of photoconductivity, temperature difference and voltage drop were measured. The obtained data demonstrate the possibility for practical use of Bi1−xSbx thin films for THz radiation detection. The results of our work promote the usage of these thermoelectric materials, as well as THz radiation detectors based on them, in various areas of modern THz photonics.


Author(s):  
J. Šulc ◽  
H. Jelínková ◽  
M. E. Doroshenko ◽  
T. T. Basiev ◽  
V. V. Osiko ◽  
...  

2016 ◽  
Vol 37 (4) ◽  
pp. 467-470 ◽  
Author(s):  
N. Lophitis ◽  
M. Antoniou ◽  
U. Vemulapati ◽  
M. Arnold ◽  
I. Nistor ◽  
...  

2010 ◽  
Vol 5 (4) ◽  
pp. 486-492 ◽  
Author(s):  
Takahiro Ueno ◽  
Kenichi Kadono ◽  
Shinji Yamaguchi ◽  
Minoru Aoyagi ◽  
Akio Tanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document