scholarly journals SPATIAL NONUNIFORM DISTRIBUTION OF 235U ISOTOPE AT SUPERCRITICAL FLUID EXTRACTION WITH CARBON DIOXIDE IN A GRADIENT TEMPERATURE FIELD

2021 ◽  
pp. 98-103
Author(s):  
B.V. Borts ◽  
S.F. Skoromnaya ◽  
Yu. G. Kazarinov ◽  
I.M. Neklyudov ◽  
V.I. Tkachenko

The spatial redistribution of the 235U isotope of natural uranium in a gradient temperature field along the height of the reactor in supercritical carbon dioxide has been experimentally investigated. The scheme of the reactor is given and the principle of operation of the reactor is described. The method of preparation of initial samples from granite samples containing natural uranium and the procedure of extraction are described. The conclusion about the spatial redistribution of 235U isotopes in supercritical carbon dioxide is based on the analysis of gamma spectra of extracts. It is shown that the concentration of the 235U isotope in a supercritical fluid is maximal near the lower heated flange of the reactor, and decreases with approaching the upper, cooled flange. It was concluded that the separation factor of the 235U isotope in supercritical carbon dioxide can be about 1.2 ± 0.12.

Author(s):  
Bakhtier Farouk ◽  
Zhieheng Lei

The behavior of thermally induced acoustic waves generated by the rapid heating of a bounding solid wall in a closed cylindrical chamber filled with supercritical carbon dioxide is investigated numerically and experimentally. A time-dependent one-dimensional problem is considered for the numerical simulations where the supercritical fluid is contained between two parallel plates. The NIST Reference Database 12 is used to obtain the property relations for supercritical carbon dioxide. The thermally induced pressure (acoustic) waves undergo repeated reflections at the two confining walls and gradually dissipate. The numerically predicted temperature of the bulk supercritical fluid is found to increase homogeneously (the so called piston effect) within the domain. The details of generation, propagation and dissipation of thermally induced acoustic waves in supercritical fluids are presented under different heating rates. In the experiments, a resistance-capacitance circuit is used to generate a rapid temperature increase in a thin metal foil located at one end of a closed cylindrical chamber. The time-dependent pressure variation in the chamber and the temperature history at the foil are recorded by a fast response measurement system. Both the experimental and numerical studies predict similar pressure wave shapes and profiles due to rapid heating of a wall.


2013 ◽  
Vol 135 (8) ◽  
Author(s):  
Nusair Hasan ◽  
Bakhtier Farouk

Thermoacoustic waves in near-critical supercritical carbon dioxide are investigated experimentally on acoustic time scales using a fast electrical heating system along with high speed pressure measurements. Supercritical carbon dioxide (near the critical or the pseudocritical states) in an enclosure is subjected to fast boundary heating with a thin nickel foil and an R-C circuit. The combination of very high thermal compressibilities and vanishingly small thermal diffusivities of the near-critical fluid affect the thermal energy propagation, leading to the formation of acoustic waves as carriers of thermal energy (the so called piston effect). The experimental results show that under the same temperature perturbation at the boundary, the strength of the acoustic field is enhanced as the initial state of the supercritical fluid approaches criticality. The heating rate, at which the boundary temperature is raised, is a key factor in the generation of these acoustic waves. The effect of different rates of boundary heating on the acoustic wave formation mechanism near the critical point is studied. The thermoacoustic wave generation and propagation in near-critical supercritical fluid is also investigated numerically and compared with the experimental measurements. The numerical predictions show a good agreement with the experimental data.


2017 ◽  
Vol 9 (2) ◽  
pp. 294-303 ◽  
Author(s):  
Xiudong Wang ◽  
Chen Wang ◽  
Xianjun Zha ◽  
Yanan Mei ◽  
Jingxin Xia ◽  
...  

In this study, supercritical fluid extraction with carbon dioxide was applied to achieve a successful extraction of both β-carotene and α-tocopherol from pumpkin.


2002 ◽  
Vol 90 (3) ◽  
Author(s):  
R. Kumar ◽  
N. Sivaraman ◽  
T. G. Srinivasan ◽  
P. R. Vasudeva Rao

SummaryExtraction of uranium from tissue matrix was studied using supercritical carbon dioxide containing modifier solvent. The extraction efficiency was investigated with carbon dioxide containing methanol, tri-


Sign in / Sign up

Export Citation Format

Share Document