Integrating "Green Chemistry" into the Regulatory Framework of European Chemicals Policy

Author(s):  
Martin Führ ◽  
Julian Schenten ◽  
Silke Kleihauer

20 years ago a concept of “Green Chemistry” was formulated by Paul Anastas and John Warner, aiming at an ambitious agenda to “green” chemical products and processes. Today the concept, laid down in a set of 12 principles, has found support in various arenas. This diffusion was supported by enhancements of the legislative framework; not only in the European Union. Nevertheless industry actors – whilst generally supporting the idea – still see “cost and perception remain barriers to green chemistry uptake”. Thus, the questions arise how additional incentives as well as measures to address the barriers and impediments can be provided. An analysis addressing these questions has to take into account the institutional context for the relevant actors involved in the issue. And it has to reflect the problem perception of the different stakeholders. The supply chain into which the chemicals are distributed are of pivotal importance since they create the demand pull for chemicals designed in accordance with the “Green Chemistry Principles”. Consequently, the scope of this study includes all stages in a chemical’s life-cycle, including the process of designing and producing the final products to which chemical substances contribute. For each stage the most relevant legislative acts, together establishing the regulatory framework of the “chemicals policy” in the EU are analysed. In a nutshell the main elements of the study can be summarized as follows: Green Chemistry (GC) is the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Besides, reaction efficiency, including energy efficiency, and the use of renewable resources are other motives of Green Chemistry. Putting the GC concept in a broader market context, however, it can only prevail if in the perception of the relevant actors it is linked to tangible business cases. Therefore, the study analyses the product context in which chemistry is to be applied, as well as the substance’s entire life-cycle – in other words, the six stages in product innovation processes): 1. Substance design, 2. Production process, 3. Interaction in the supply chain, 4. Product design, 5. Use phase and 6. After use phase of the product (towards a “circular economy”). The report presents an overview to what extent the existing framework, i.e. legislation and the wider institutional context along the six stages, is setting incentives for actors to adequately address problematic substances and their potential impacts, including the learning processes intended to invoke creativity of various actors to solve challenges posed by these substances. In this respect, measured against the GC and Learning Process assessment criteria, the study identified shortcomings (“delta”) at each stage of product innovation. Some criteria are covered by the regulatory framework and to a relevant extent implemented by the actors. With respect to those criteria, there is thus no priority need for further action. Other criteria are only to a certain degree covered by the regulatory framework, due to various and often interlinked reasons. For those criteria, entry points for options to strengthen or further nuance coverage of the respective principle already exist. Most relevant are the deltas with regard to those instruments that influence the design phase; both for the chemical substance as such and for the end-product containing the substance. Due to the multi-tier supply chains, provisions fostering information, communication and cooperation of the various actors are crucial to underpin the learning processes towards the GCP. The policy options aim to tackle these shortcomings in the context of the respective stage in order to support those actors who are willing to change their attitude and their business decisions towards GC. The findings are in general coherence with the strategies to foster GC identified by the Green Chemistry & Commerce Council.

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1212
Author(s):  
Ao Liu ◽  
Aixi Han ◽  
Li Chai

Apparel manufacturing involves high water consumption and heavy water pollution in its supply chain, e.g., planting cotton, producing chemical fibers, and dyeing. This study employs a multi-regional input–output (MRIO) model to (1) assess the life cycle of blue and grey water (chemical oxygen demand (COD) specific) of China’s apparel manufacturing; (2) reveal the hidden linkage among sectors and regions in the whole supply chain; and (3) identify the key regions and upstream sectors with the most water consumption and heaviest water pollution. We found that the agricultural sector (i.e., planting fiber crops) is responsible for primary water consumption and water pollution. In addition, different provinces assume different production roles. Guangdong is a major output province in apparel manufacturing. However, its economic output is contributed to by other regions, such as blue water from Xinjiang and Jiangsu and grey water from Hebei and Shandong. Our research reveals the significance of taking an inter-regional perspective on water resource issues throughout the supply chain in apparel manufacturing. The sustainable development of China’s apparel manufacturing relies on improving water-use efficiency and reasonable industrial layout. The results are of significance and informative for policymakers to build a water-sustainable apparel industry.


2018 ◽  
Vol 10 (5) ◽  
pp. 1451 ◽  
Author(s):  
Mario Giraldi-Díaz ◽  
Lorena De Medina-Salas ◽  
Eduardo Castillo-González ◽  
Max De la Cruz-Benavides

Author(s):  
Marta Rossi ◽  
Alessandra Papetti ◽  
Marco Marconi ◽  
Michele Germani

2019 ◽  
Vol 11 (5) ◽  
pp. 1370 ◽  
Author(s):  
Shutaro Takeda ◽  
Alexander Keeley ◽  
Shigeki Sakurai ◽  
Shunsuke Managi ◽  
Catherine Norris

The adoption of renewable energy technologies in developing nations is recognized to have positive environmental impacts; however, what are their effects on the electricity supply chain workers? This article provides a quantitative analysis on this question through a relatively new framework called social life cycle assessment, taking Malaysia as a case example. Impact assessments by the authors show that electricity from renewables has greater adverse impacts on supply chain workers than the conventional electricity mix: Electricity production with biomass requires 127% longer labor hours per unit-electricity under the risk of human rights violations, while the solar photovoltaic requires 95% longer labor hours per unit-electricity. However, our assessment also indicates that renewables have less impacts per dollar-spent. In fact, the impact of solar photovoltaic would be 60% less than the conventional mix when it attains grid parity. The answer of “are renewables as friendly to humans as to the environment?” is “not-yet, but eventually.”


2004 ◽  
Vol 64 (2) ◽  
pp. 237-242 ◽  
Author(s):  
M. C. Lacerda ◽  
A. M. R. M. Ferreira ◽  
T. V. Zanuncio ◽  
J. C. Zanuncio ◽  
A. S. Bernardino ◽  
...  

Biological control has been reducing the use of chemical products against insect pests, specially predatory Pentatomidae. Species of this group can present high variations in their life cycle as a result of their diet. Thus, the objective of this research was to study nymph development and reproduction of Podisus distinctus (Stäl, 1860) (Heteroptera: Pentatomidae) fed on Bombyx mori L., 1758 (Lepidoptera: Bombycidae) larvae (T1), compared to those fed on Tenebrio molitor L., 1758 (Coleoptera: Tenebrionidae) (T2) and Musca domestica L., 1758 (Diptera: Muscidae) larvae (T3) at a temperature of 25 ± 0.5ºC, relative humidity of 70 ± 2%, and photophase of 12 h. Predators fed on B. mori showed duration of the nymph phase (18.68 ± 1.02) similar to those fed on T. molitor (18.32 ± 1.49). Pre-oviposition and oviposition periods and number of egg masses, besides eggs and nymphs per female, were higher with B. mori (5.83 ± 2.02; 15.00 ± 7.40; 8.42 ± 1.84; 296.69 ± 154.75; and 228.55 ± 141.04, respectively) while longevity of males and females of P. distinctus was 25.76 ± 16.15 and 35.00 ± 16.15 days with T. molitor, and 20.57 ± 13.60 and 23.46 ± 12.35 days with B. mori, respectively.


Sign in / Sign up

Export Citation Format

Share Document