scholarly journals A Short Review on Application of Liquisolid Technology

Author(s):  
Shaveta Sharma ◽  
Divya Sharma ◽  
Jyoti Singh

In this paper we have surveyed about formulation and evaluation of Liquisolid formulations and its work in antidiabetics . Mostly poorly water soluble drugs are in research category despite of less dissolution rate and poor bioavailability. Solubility is a vital parameter to develop new formulation as industries faced serious issue regarding the poor aqueous solubility of the drugs. Various methods for solubility enhancement include modifications of the drug, involvement of co-solvents, complexation, salt formation, size reduction. A propitious technique to solve major challenges like solubility, dissolution rate and their bioavailability. This technique can be defined as the conversion of poorly soluble liquid medications into non-adherent, dry, compressible and free flowing powder mixtures with help of excipients. Many anti-diabetic drugs are belonging to BCS Class-II facing challenges like solubility and bioavailability.

Author(s):  
Anjana Anil ◽  
Litha Thomas ◽  
Preethi Sudheer

The challenge faced by the majority of the pharmaceutical products is the poor solubility of the drug candidates which leads to low bioavailability. Liquisolid compact is one of the emerging techniques that enhances the dissolution of poorly water soluble drugs. Liquisolid system mentions to the formulation made by the transforming the liquid drug, either in the form of suspension or solution in non volatile solvents into a dry, non-sticky, free-flowing and compactable powder mixtures. This is achieved by mixing the suspension or solution of the drug with appropriate carriers and coating agents. The technology has the ability to increase aqueous solubility, rate of dissolution and absorption of poorly soluble drug by keeping it in molecularly dispersed form leading to its improved bioavailability when compared to conventional tablets. Liquisolid technology is the impending approach for enhancing the solubility of poorly water-soluble drug by adopting simple manufacturing process and low production cost.


2019 ◽  
Vol 25 (4) ◽  
pp. 331-337
Author(s):  
Maryam Maghsoodi ◽  
Fatemeh Shahi

Background: Loading of poorly water-soluble drugs on the porous materials has attracted great interest as an effective approach for enhancement of dissolution rate of drugs. The Aerosil (Ae) with porous structure is expected to facilitate the dissolution of drugs which is generally associated with precipitation. Thus, the purpose of this investigation was thus to develop a formulation which combines a precipitation inhibitor and a poorly soluble drug loaded Ae. Methods: A poorly water-soluble drug, Cinnarizine (CNZ) was used as a model, and Eudragit L100 (Eu) was used as a precipitation inhibitor. Formulations were produced by solvent evaporation and characterized by FT-IR and differential scanning calorimetry (DSC). Dissolution experiments were carried out in phosphate buffer (pH 6.8) under non-sink conditions. Results: DSC thermograms revealed that no crystalline structure of CNZ was present in CNZ-loaded Ae formulations and no long-range order was arranged upon loading of CNZ into Ae. In dissolution test, the CNZ-loaded Ae physically blended with Eu achieved a remarkedly higher CNZ concentration over the plain CNZ and over the CNZ-Eu co-loaded Ae. The dissolution rate of CNZ from the CNZ-loaded Ae was enhanced with increasing Ae amount and the dissolution was maximum when the ratio of CNZ: Ae was 1:10 CNZ: Ae. In addition, the precipitation inhibition was increased when the amount of Eu was high. Conclusion: The results of this work revealed that the dissolution behaviour of CNZ-loaded Ae is enhanced by physically blending of Eu as a suitable precipitation inhibitor.


2016 ◽  
Vol 2 (2) ◽  
pp. 91-95
Author(s):  
Neelima Rani T ◽  
Pavani A ◽  
Sobhita Rani P ◽  
Srilakshmi N

This study aims to formulate solid dispersions (SDs) of Simvastatin (SIM) to improve the aqueous solubility, dissolution rate and to facilitate faster onset of action. Simvastatin is a BCS class II drug having low solubility & therefore low oral bioavailability. In the present study, SDs of simvastatin different drug-carrier ratios were prepared by kneading method. The results showed that simvastatin solubility & dissolution rate enhanced with polymer SSG in the ratio 1:7 due to increase in wetting property or possibly may be due to change in crystallinity of the drug.


Author(s):  
Meka Lingam ◽  
Vobalaboina Venkateswarlu

The low aqueous solubility of celecoxib (CB) and thus its low bioavailability is a problem.    Thus, it is suggested to improve the solubility using cosolvency and solid dispersions techniques. Pure CB has solubility of 6.26±0.23µg/ml in water but increased solubility of CB was observed with increasing concentration of cosolvents like PEG 400, ethanol and propylene glycol. Highest solubility (791.06±15.57mg/ml) was observed with cosolvency technique containing the mixture of composition 10:80:10%v/v of water: PEG 400: ethanol. SDs with different polymers like PVP, PEG were prepared and subjected to physicochemical characterization using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), differential scanning calorimetry (DSC), solubility and dissolution studies. These studies reveals that CB exists mainly in amorphous form in prepared solid dispersions of PVP, PEG4000 and PEG6000 further it can also be confirmed by solubility and dissolution rate studies. Solid dispersions of PV5 and PV9 have shown highest saturation solubility and dissolution rate


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Shivarani Eesam ◽  
Jaswanth S. Bhandaru ◽  
Chandana Naliganti ◽  
Ravi Kumar Bobbala ◽  
Raghuram Rao Akkinepally

Abstract Background Increasing hydrophilicity of poorly water-soluble drugs is a major challenge in drug discovery and development. Cocrystallization is one of the techniques to enhance the hydrophilicity of such drugs. Carvedilol (CAR), a nonselective beta/alpha1 blocker, used in the treatment of mild to moderate congestive heart failure and hypertension, is classified under BCS class II with poor aqueous solubility and high permeability. Present work is an attempt to improve the solubility of CAR by preparing cocrystals using hydrochlorothiazide (HCT), a diuretic drug, as coformer. CAR-HCT (2:0.5) cocrystals were prepared by slurry conversion method and were characterized by DSC, PXRD, FTIR, Raman, and SEM analysis. The solubility, stability, and dissolution (in vitro) studies were conducted for the cocrystals. Results The formation of CAR-HCT cocrystals was confirmed based on melting point, DSC thermograms, PXRD data, FTIR and Raman spectra, and finally by SEM micrographs. The solubility of the prepared cocrystals was significantly enhanced (7.3 times), and the dissolution (in vitro) was improved by 2.7 times as compared to pure drug CAR. Further, these cocrystals were also found to be stable for 3 months (90 days). Conclusion It may be inferred that the drug–drug (CAR-HCT) cocrystallization enhances the solubility and dissolution rate of carvedilol significantly. Further, by combining HCT as coformer could well be beneficial pharmacologically too.


2013 ◽  
Vol 49 (3) ◽  
pp. 571-578 ◽  
Author(s):  
Payal Hasmukhlal Patil ◽  
Veena Sailendra Belgamwar ◽  
Pratibha Ramratan Patil ◽  
Sanjay Javerilal Surana

The objective of the present work was to enhance the solubility and dissolution rate of the drug raloxifene HCl (RLX), which is poorly soluble in water. The solubility of RLX was observed to increase with increasing concentration of hydroxypropyl methylcellulose (HPMC E5 LV). The optimized ratio for preparing a solid dispersion (SD) of RLX with HPMC E5 LV using the microwave-induced fusion method was 1:5 w/w. Microwave energy was used to prepare SDs. HPMC E5 LV was used as a hydrophilic carrier to enhance the solubility and dissolution rate of RLX. After microwave treatment, the drug and hydrophilic polymer are fused together, and the drug is converted from the crystalline form into an amorphous form. This was confirmed through scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) studies. These results suggested that the microwave method is a simple and efficient method of preparing SDs. The solubility and dissolution rate of the SDs were increased significantly compared with pure RLX due to the surfactant and wetting properties of HPMC E5 LV and the formation of molecular dispersions of the drug in HPMC E5 LV. It was concluded that the solubility and dissolution rate of RLX are increased significantly when an SD of the drug is prepared using the microwave-induced fusion method.


Author(s):  
A. N. Patil ◽  
D. M. Shinkar ◽  
R. B. Saudagar

Enhancement of solubility, dissolution rate and bioavailability of the drug is a very challenging task in drug development, nearly 40% of the new chemical entities currently being discovered are poorly water soluble drugs. The solubility behaviour of the drugs remains one of the most challenging aspects in formulation development. This results in important products not reaching the market or not achieving their full potential. Solid dispersion is one of the techniques adopted for the formulation of such drugs and various methods are used for the preparation of solid dispersion. Solid dispersion is generally prepared with a drug which is having poor aqueous solubility and hydrophilic carrier. This article review various methods and concept of solid dispersion, criteria for drug selection, advantage and disadvantage, characterization, and application.


Author(s):  
Sanjoy Kumar Das

Improving oral bioavailability of drugs those given as solid dosage forms remains a challenge for the formulation scientists due to solubility problems. The dissolution rate could be the rate-limiting process in the absorption of a drug from a solid dosage form of relatively insoluble drugs. Therefore increase in dissolution of poorly soluble drugs by solid dispersion technique presents a challenge to the formulation scientists. Solid dispersion techniques have attracted considerable interest of improving the dissolution rate of highly lipophilic drugs thereby improving their bioavailability by reducing drug particle size, improving wettability and forming amorphous particles. The term solid dispersion refers to a group of solid products consisting of at least two different components, generally a hydrophilic inert carrier or matrix and a hydrophobic drug. This article reviews historical background of solid dispersion technology, limitations, classification, and various preparation techniques with its advantages and disadvantages. This review also discusses the recent advances in the field of solid dispersion technology. Based on the existing results and authors’ reflection, this review give rise to reasoning and suggested choices of carrier or matrix and solid dispersion procedure.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1047
Author(s):  
Walid Anwar ◽  
Hamdy Dawaba ◽  
Mohsen Afouna ◽  
Ahmed Samy ◽  
Mohammed Rashed ◽  
...  

Candesartan Cilexetil (CC) is a prodrug widely used in the treatment of hypertension and heart failure, but it has some limitations, such as very poor aqueous solubility, high affinity to P-glycoprotein efflux mechanism, and hepatic first-pass metabolism. Therefore, it has very low oral bioavailability. In this study, glyceryl monostearate (GMS) and Capryol™ 90 were selected as solid and liquid lipids, respectively, to develop CC-NLC (nanostructured lipid carrier). CC was successfully encapsulated into NLP (CC-NLC) to enhance its oral bioavailability. CC-NLC was formulated using a hot homogenization-ultrasonication technique, and the physicochemical properties were characterized. The developed CC-NLC formulation was showed in nanometric size (121.6 ± 6.2 nm) with high encapsulation efficiency (96.23 ± 3.14%). Furthermore, it appeared almost spherical in morphology under a transmission electron microscope. The surgical experiment of the designed CC-NLC for absorption from the gastrointestinal tract revealed that CC-NLC absorption in the stomach was only 15.26% of that in the intestine. Otherwise, cellular uptake study exhibit that CC-NLCs should be internalized through the enterocytes after that transported through the systemic circulation. The pharmacokinetic results indicated that the oral bioavailability of CC was remarkably improved above 2-fold after encapsulation into nanostructured lipid carriers. These results ensured that nanostructured lipid carriers have a highly beneficial effect on improving the oral bioavailability of poorly water-soluble drugs, such as CC.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 407
Author(s):  
Sooho Yeo ◽  
Jieun An ◽  
Changhee Park ◽  
Dohyun Kim ◽  
Jaehwi Lee

This study aimed to improve the solubility and dissolution of aprepitant, a drug with poor aqueous solubility, using a phosphatidylcholine (PC)-based solid dispersion system. When fabricating the PC-based solid dispersion, we employed mesoporous microparticles, as an adsorbent, and disintegrants to improve the sticky nature of PC and dissolution of aprepitant, respectively. The solid dispersions were prepared by a solvent evaporation technique and characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry, and X-ray powder diffraction. The FTIR results showed that aprepitant interacted with the PC carrier by both hydrogen bonds and van der Waals forces that can also be observed in the interaction between aprepitant and polymer carriers. The solid dispersions fabricated with only PC were not sufficient to convert the crystallinity of aprepitant to an amorphous state, whereas the formulations that included adsorbent and disintegrant successfully changed that of aprepitant to an amorphous state. Both the solubility and dissolution of aprepitant were considerably enhanced in the PC-based solid dispersions containing adsorbent and disintegrant compared with those of pure aprepitant and polymer-based solid dispersions. Therefore, these results suggest that our PC-based solid dispersion system is a promising alternative to conventional formulations for poorly water-soluble drugs, such as aprepitant.


Sign in / Sign up

Export Citation Format

Share Document