ON SOLUTIONS OF LINEAR FUNCTIONAL INTEGRAL AND INTEGRO-DIFFERENTIAL EQUATIONS VIA LAGRANGE POLYNOMIALS

2021 ◽  
Vol 21 (3) ◽  
pp. 707-720
Author(s):  
ŞUAYİP YÜZBAŞI YÜZBAŞI ◽  
MEHMET SEZER

In this study, a matrix-collocation method is developed numerically to solve the linear Fredholm-Volterra-type functional integral and integro-differential equations. The linear functional integro-differential equations are considered under initial conditions. The mentioned type problems often appear in various branches of science and engineering such as physics, biology, mechanics, electronics. The method essentially is a collocation method based on the Lagrange polynomials and matrix operations. By using presented method, the problem is reduced to a system of linear algebraic equations. The solution of this system gives the coefficients of assumed solution. An error analysis based on the residual function is studied. Some examples are solved to demonstrate the accuracy and efficiency of the method.

Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Suayip Yüzbasi ◽  
Emrah Gök ◽  
Mehmet Sezer

AbstractFunctional differential equations have importance in many areas of science such as mathematical physics. These systems are difficult to solve analytically.In this paper we consider the systems of linear functional differential equations [1-9] including the term y(αx + β) and advance-delay in derivatives of y .To obtain the approximate solutions of those systems, we present a matrix-collocation method by using Müntz-Legendre polynomials and the collocation points. For this purpose, to obtain the approximate solutions of those systems, we present a matrix-collocation method by using Müntz-Legendre polynomials and the collocation points. This method transform the problem into a system of linear algebraic equations. The solutions of last system determine unknown co-efficients of original problem. Also, an error estimation technique is presented and the approximate solutions are improved by using it. The program of method is written in Matlab and the approximate solutions can be obtained easily. Also some examples are given to illustrate the validity of the method.


2020 ◽  
Vol 12 (4) ◽  
pp. 517-523
Author(s):  
G. Singh ◽  
I. Singh

In this paper, a collocation method based on Hermite polynomials is presented for the numerical solution of the electric circuit equations arising in many branches of sciences and engineering. By using collocation points and Hermite polynomials, electric circuit equations are transformed into a system of linear algebraic equations with unknown Hermite coefficients. These unknown Hermite coefficients have been computed by solving such algebraic equations. To illustrate the accuracy of the proposed method some numerical examples are presented.


2012 ◽  
Vol 09 (02) ◽  
pp. 1240031 ◽  
Author(s):  
BO-NAN JIANG

A least-squares meshfree collocation method is presented. The method is based on the first-order differential equations in order to result in a better conditioned linear algebraic equations, and to obtain the primary variables (displacements) and the dual variables (stresses) simultaneously with the same accuracy. The moving least-squares approximation is employed to construct the shape functions. The sum of squared residuals of both differential equations and boundary conditions at nodal points is minimized. The present method does not require any background mesh and additional evaluation points, and thus is a truly meshfree method. Unlike other collocation methods, the present method does not involve derivative boundary conditions, therefore no stabilization terms are needed, and the resulting stiffness matrix is symmetric positive definite. Numerical examples show that the proposed method possesses an optimal rate of convergence for both primary and dual variables, if the nodes are uniformly distributed. However, the present method is sensitive to the choice of the influence length. Numerical examples include one-dimensional diffusion and convection-diffusion problems, two-dimensional Poisson equation and linear elasticity problems.


2017 ◽  
Vol 8 (1-2) ◽  
pp. 40 ◽  
Author(s):  
Mohamed Ramadan ◽  
Kamal Raslan ◽  
Talaat El Danaf ◽  
Mohamed A. Abd Elsalam

The purpose of this paper is to investigate the use of exponential Chebyshev (EC) collocation method for solving systems of high-order linear ordinary differential equations with variable coefficients with new scheme, using the EC collocation method in unbounded domains. The EC functions approach deals directly with infinite boundaries without singularities. The method transforms the system of differential equations and the given conditions to block matrix equations with unknown EC coefficients. By means of the obtained matrix equations, a new system of equations which corresponds to the system of linear algebraic equations is gained. Numerical examples are given to illustrative the validity and applicability of the method.


Author(s):  
O. A. Uwaheren ◽  
A. F. Adebisi ◽  
O. A. Taiwo

In this work, a general class of multi-order fractional differential equations of Lane-Emden type is considered. Here, an assumed approximate solution is substituted into a slightly perturbed form of the general class and the resulting equation is collocated at equally spaced interior points to give a system of linear algebraic equations which are then solved by suitable computer software; Maple 18.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Burcu Gürbüz ◽  
Mehmet Sezer ◽  
Coşkun Güler

Laguerre collocation method is applied for solving a class of the Fredholm integro-differential equations with functional arguments. This method transforms the considered problem to a matrix equation which corresponds to a system of linear algebraic equations. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments. Also, the approximate solutions are corrected by using the residual correction method.


Author(s):  
S.C. Shiralashetti ◽  
A.B. Deshi

In this paper, numerical solutions of Riccati and fractional Riccati differential equations are obtained by the Haar wavelet collocation method. An operational matrix of integration based on the Haar wavelet is established, and the procedure for applying the matrix to solve these equations. The fundamental idea of Haar wavelet method is to convert the proposed differential equations into a group of non-linear algebraic equations. The accuracy of approximate solution can be further improved by increasing the level of resolution and an error analysis is computed. The examples are given to demonstrate the fast and flexibility of the method. The results obtained are in good agreement with the exact in comparison with existing ones and it is shown that the technique introduced here is robust, easy to apply and is not only enough accurate but also quite stable.


2018 ◽  
Vol 15 (3) ◽  
pp. 344-351
Author(s):  
Baghdad Science Journal

The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.


Author(s):  
Khalid K. Ali ◽  
Mohamed A. Abd El salam ◽  
Emad M. H. Mohamed

AbstractIn this paper, a numerical technique for a general form of nonlinear fractional-order differential equations with a linear functional argument using Chebyshev series is presented. The proposed equation with its linear functional argument represents a general form of delay and advanced nonlinear fractional-order differential equations. The spectral collocation method is extended to study this problem as a discretization scheme, where the fractional derivatives are defined in the Caputo sense. The collocation method transforms the given equation and conditions to algebraic nonlinear systems of equations with unknown Chebyshev coefficients. Additionally, we present a general form of the operational matrix for derivatives. A general form of the operational matrix to derivatives includes the fractional-order derivatives and the operational matrix of an ordinary derivative as a special case. To the best of our knowledge, there is no other work discussed this point. Numerical examples are given, and the obtained results show that the proposed method is very effective and convenient.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
M. H. Heydari ◽  
M. R. Hooshmandasl ◽  
F. M. Maalek Ghaini ◽  
F. Mohammadi

The operational matrices of fractional-order integration for the Legendre and Chebyshev wavelets are derived. Block pulse functions and collocation method are employed to derive a general procedure for forming these matrices for both the Legendre and the Chebyshev wavelets. Then numerical methods based on wavelet expansion and these operational matrices are proposed. In this proposed method, by a change of variables, the multiorder fractional differential equations (MOFDEs) with nonhomogeneous initial conditions are transformed to the MOFDEs with homogeneous initial conditions to obtain suitable numerical solution of these problems. Numerical examples are provided to demonstrate the applicability and simplicity of the numerical scheme based on the Legendre and Chebyshev wavelets.


Sign in / Sign up

Export Citation Format

Share Document