SIMULATIONS OF PROPELLER-INDUCED CAVITATION PROCESSES BASED ON THE NAVIER-STOKES EQUATIONS AND THE VOLUME-OF-FLUID METHOD

Author(s):  
O.L. Krutyakova ◽  
A.S. Kozelkov ◽  
V.V. Kurulin
2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Dong-Liang Sun ◽  
Yong-Ping Yang ◽  
Jin-Liang Xu ◽  
Wen-Quan Tao

An improved volume of fluid method called the accurate density and viscosity volume of fluid (ADV-VOF) method is proposed to solve two-phase flow problems. The method has the following features: (1) All operations are performed on a collocated grid system. (2) The piecewise linear interface calculation is used to capture interfaces and perform accurate estimations of cell-edged density and viscosity. (3) The conservative Navier–Stokes equations are solved with the convective term discretized by a second and third order interpolation for convection scheme. (4) A fractional-step method is applied to solve the conservative Navier–Stokes equations, and the BiCGSTAB algorithm is used to solve the algebraic equations by discretizing the pressure-correction equation. The above features guarantee a simple, stable, efficient, and accurate simulation of two-phase flow problems. The effectiveness of the ADV-VOF method is verified by comparing it with the conventional volume of fluid method with rough treatment of cell-edged density and viscosity. It is found that the ADV-VOF method could successfully model the two-phase problems with large density ratio and viscosity ratio between two phases and is better than the conventional volume of fluid method in this respect.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1535
Author(s):  
Lourenço Sassetti Mendes ◽  
Javier L. Lara ◽  
Maria Teresa Viseu

Air entrainment is common in free surface flows in large hydraulic structures (e.g., spillways, chutes, energy dissipation structures) and must be considered to assure an effective and safe operation. Due to the large size of the prototype structures, it is infeasible to model individual air bubbles. Therefore, using the OpenFOAM toolbox, an efficient simulation model for aerated flows is developed for engineering purposes. The Reynolds-averaged Navier–Stokes equations and the volume-of-fluid method are coupled with a sub-grid bubble population model that simulates entrainment and transport. A comprehensive assessment of the effectiveness, computational cost, and reliability is performed. Local and continuum bubble entrainment are evaluated in two distinct flows: an impinging jet and along a spillway chute. Aeration is induced, respectively, by a shear flow and by the thickening of the turbulent boundary layer. Moreover, a detailed sensitivity analysis of the model’s parameters is conducted. Calibration and validation are performed against experimental and prototype data. Among the analyzed entrainment formulations, the one depending exclusively on the turbulent kinetic energy is the only applicable to different flow types. Good accuracy is found, meeting engineering standards, and the additional computation cost is marginal. Results depend primarily on the volume-of-fluid method ability to reproduce the interface. Calibration is straightforward in self-aeration but more difficult for local aeration.


Author(s):  
Jagannath Mahato ◽  
Dhananjay Kumar Srivastava ◽  
Dinesh Kumar Chandraker ◽  
Rajaram Lakkaraju

Abstract Investigations on flow dynamics of a compound droplet have been carried out in a two-dimensional fully-developed Poiseuille flow by solving the Navier-Stokes equations with the evolution of the droplet using the volume of fluid method with interface compression. The outer droplet undergoes elongation similar to a simple droplet of same size placed under similar ambient condition in the flow direction, but, the inner droplet evolves in compressed form. The compound droplet is varied starting from the centerline towards the walls of the channel. The simulations showed that on applying an offset, asymmetric slipper-like shapes are observed as opposed to symmetric bullet-like shapes through the centerline. Temporal dynamics, deformation patterns, and droplet shell pinch-off mode vary with the offset, with induction of lateral migration. Also, investigations are done on the effect of various parameters like droplet size, Capillary number, and viscosity ratio on the deformation magnitude and lateral migration.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3092
Author(s):  
Lourenço Sassetti Mendes ◽  
Javier L. Lara ◽  
Maria Teresa Viseu

Spillway design is key to the effective and safe operation of dams. Typically, the flow is characterized by high velocity, high levels of turbulence, and aeration. In the last two decades, advances in computational fluid dynamics (CFD) made available several numerical tools to aid hydraulic structures engineers. The most frequent approach is to solve the Reynolds-averaged Navier–Stokes equations using an Euler type model combined with the volume-of-fluid (VoF) method. Regardless of a few applications, the complete two-phase Euler is still considered to demand exorbitant computational resources. An assessment is performed in a spillway offset aerator, comparing the two-phase volume-of-fluid (TPVoF) with the complete two-phase Euler (CTPE). Both models are included in the OpenFOAM® toolbox. As expected, the TPVoF results depend highly on the mesh, not showing convergence in the maximum chute bottom pressure and the lower-nappe aeration, tending to null aeration as resolution increases. The CTPE combined with the k–ω SST Sato turbulence model exhibits the most accurate results and mesh convergence in the lower-nappe aeration. Surprisingly, intermediate mesh resolutions are sufficient to surpass the TPVoF performance with reasonable calculation efforts. Moreover, compressibility, flow bulking, and several entrained air effects in the flow are comprehended. Despite not reproducing all aspects of the flow with acceptable accuracy, the complete two-phase Euler demonstrated an efficient cost-benefit performance and high value in spillway aerated flows. Nonetheless, further developments are expected to enhance the efficiency and stability of this model.


The purpose of this paper is to use a hydrodynamic 3D model to simulate steady flow over spillway-stilling basin of Mylam, Vietnam. A robust and effective tool of Flow 3D software in simulating many complicated phenomena of fluid flow is selected. This model uses Volume of Fluid Method to solve Navier-Stokes equations. The computed water surface elevation at gauges along centerline of weir and chute channel are compared with experimental ones in four working conditions. The reasonable agreement between them are observed. Besides, the detail hydraulic features in each segment is indicated such as: oblique wave on spillway chute; separated flow at curve and enlarge segment and the specific hydraulic energy dissipation in stilling basin of design is carried out. The insufficient construction of dissipated obstacles in stilling basin design is shown. Therefore, a proper design is proposed.


2011 ◽  
Vol 138-139 ◽  
pp. 79-84
Author(s):  
Ya Mei Lan ◽  
Yong Guo Li ◽  
Wen Hua Guo

Based on the finite volume method, the Navier-Stokes equations was used as the governing equations to develop a new module of the wave generating and absorbing function. The wave generating was introduced as the man-made source terms into the momentum equations, which was suitable for the volume of fluid method (VOF). Within the numerical wave flume, the reflected waves from the construction could be absorbed effectively. The absorbing section arranged at the end of the wave flume was for absorbing the incident wave, which allows for random and effective working time within the reletively smaller computation domain. Consequently, the computation efficiency was greatly improved. Finally, the validity of the absorbing section arranged at the front and end of the wave flume was investigated individually.


2012 ◽  
Vol 1 (33) ◽  
pp. 43
Author(s):  
Peter Wellens ◽  
Marcel Van Gent

Coastal protection of land reclamation areas is often composed of rock or otherwise permeable material. Wave-induced setup inside permeable structures can be a problem for land reclamation areas if the design land level is too low. Wave-induced setup has not been studied extensively. In this study we use COMFLOW, a numerical model based on the Navier-Stokes equations employing the Volume-Of-Fluid method to displace the free surface, to quantify wave-induced setup inside permeable structures. The results are summarized in a conceptual design formula to determine wave-induced setup as a function of wave height Hm0 and rock diameter Dn50.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


Sign in / Sign up

Export Citation Format

Share Document