scholarly journals LOCALLY-BALANCED $k$-PARTITIONS OF GRAPHS

2021 ◽  
Vol 55 (2 (255)) ◽  
pp. 96-112
Author(s):  
Aram H. Gharibyan ◽  
Petros A. Petrosyan

In this paper we generalize locally-balanced $2$-partitions of graphs and introduce a new notion, the locally-balanced $k$-partitions of graphs, defined as  follows: a $k$-partition of a graph $G$ is a surjection $f:V(G)\rightarrow \{0,1,\ldots,k-1\}$.  A $k$-partition ($k\geq 2$) $f$ of a graph $G$ is a locally-balanced with an open neighborhood, if for every $v\in V(G)$ and any $0\leq i<j\leq k-1$ $$\left\vert \vert \{u\in N_{G}(v)\colon\,f(u)=i\}\vert - \vert \{u\in N_{G}(v)\colon\,f(u)=j\}\vert \right\vert\leq 1.$$ A $k$-partition ($k\geq 2$) $f^{\prime}$ of a graph $G$ is a locally-balanced with a closed  neighborhood, if for every $v\in V(G)$ and any $0\leq i<j\leq k-1$ $$\left\vert \vert \{u\in N_{G}[v]\colon\,f^{\prime}(u)=i\}\vert - \vert \{u\in N_{G}[v]\colon\,f^{\prime}(u)=j\}\vert \right\vert\leq 1.$$ The minimum number $k$ ($k\geq 2$), for which a graph $G$ has a locally-balanced $k$-partition with an open (a closed) neighborhood, is called an         $lb$-open ($lb$-closed) chromatic number of $G$ and denoted by                   $\chi_{(lb)}(G)$ ($\chi_{[lb]}(G)$). In this paper we determine or bound the $lb$-open and $lb$-closed chromatic numbers of several families of graphs. We also consider the connections of $lb$-open and $lb$-closed chromatic numbers of graphs with other chromatic numbers such as injective and $2$-distance chromatic numbers.

2013 ◽  
Vol 333-335 ◽  
pp. 1452-1455
Author(s):  
Chun Yan Ma ◽  
Xiang En Chen ◽  
Fang Yang ◽  
Bing Yao

A proper $k$-edge coloring of a graph $G$ is an assignment of $k$ colors, $1,2,\cdots,k$, to edges of $G$. For a proper edge coloring $f$ of $G$ and any vertex $x$ of $G$, we use $S(x)$ denote the set of thecolors assigned to the edges incident to $x$. If for any two adjacent vertices $u$ and $v$ of $G$, we have $S(u)\neq S(v)$,then $f$ is called the adjacent vertex distinguishing proper edge coloring of $G$ (or AVDPEC of $G$ in brief). The minimum number of colors required in an AVDPEC of $G$ is called the adjacent vertex distinguishing proper edge chromatic number of $G$, denoted by $\chi^{'}_{\mathrm{a}}(G)$. In this paper, adjacent vertex distinguishing proper edge chromatic numbers of several classes of complete 5-partite graphs are obtained.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Gábor Simonyi ◽  
Gábor Tardos

International audience The local chromatic number of a graph, introduced by Erdős et al., is the minimum number of colors that must appear in the closed neighborhood of some vertex in any proper coloring of the graph. This talk would like to survey some of our recent results on this parameter. We give a lower bound for the local chromatic number in terms of the lower bound of the chromatic number provided by the topological method introduced by Lovász. We show that this bound is tight in many cases. In particular, we determine the local chromatic number of certain odd chromatic Schrijver graphs and generalized Mycielski graphs. We further elaborate on the case of $4$-chromatic graphs and, in particular, on surface quadrangulations.


2012 ◽  
Vol 13 (03n04) ◽  
pp. 1250011 ◽  
Author(s):  
GEORGE QI ◽  
SHENGHAO WANG ◽  
WEIZHEN GU

The chromatic number of a graph G, denoted χ(G) is the minimum number of colors needed to color vertices of G so that no two adjacent vertices share the same color. A functigraph over a given graph is obtained as follows: Let G' be a disjoint copy of a given G and f be a function f : V(G) → V(G'). The functigraph over G, denoted by C(G, f), is the graph with V(C(G, f)) = V(G) ∪ V(G') and E(C(G, f)) = E(G) ∪ E(G') ∪ {uv : u ∈ V(G), v ∈ V(G'), v = f(u)}. Recently, Chen et al. proved that [Formula: see text]. In this paper, we first provide sufficient conditions on functions f to reach the lower bound for any graph. We then study the attainability of the chromatic numbers of functigraphs. Finally, we extend the definition of a functigraph in different ways and then investigate the bounds of chromatic numbers of such graphs.


2005 ◽  
Vol Vol. 7 ◽  
Author(s):  
David R. Wood

International audience Let G be a graph with chromatic number χ (G). A vertex colouring of G is \emphacyclic if each bichromatic subgraph is a forest. A \emphstar colouring of G is an acyclic colouring in which each bichromatic subgraph is a star forest. Let χ _a(G) and χ _s(G) denote the acyclic and star chromatic numbers of G. This paper investigates acyclic and star colourings of subdivisions. Let G' be the graph obtained from G by subdividing each edge once. We prove that acyclic (respectively, star) colourings of G' correspond to vertex partitions of G in which each subgraph has small arboricity (chromatic index). It follows that χ _a(G'), χ _s(G') and χ (G) are tied, in the sense that each is bounded by a function of the other. Moreover the binding functions that we establish are all tight. The \emphoriented chromatic number χ ^→(G) of an (undirected) graph G is the maximum, taken over all orientations D of G, of the minimum number of colours in a vertex colouring of D such that between any two colour classes, all edges have the same direction. We prove that χ ^→(G')=χ (G) whenever χ (G)≥ 9.


2019 ◽  
Vol 11 (06) ◽  
pp. 1950066
Author(s):  
S. Arumugam ◽  
K. Raja Chandrasekar

A dominator coloring (respectively, total dominator coloring) of a graph [Formula: see text] is a proper coloring [Formula: see text] of [Formula: see text] such that each closed neighborhood (respectively, open neighborhood) of every vertex of [Formula: see text] contains a color class of [Formula: see text] The minimum number of colors required for a dominator coloring (respectively, total dominator coloring) of [Formula: see text] is called the dominator chromatic number (respectively, total dominator chromatic number) of [Formula: see text] and is denoted by [Formula: see text] (respectively, [Formula: see text]). In this paper, we prove that the dominator coloring problem and the total dominator coloring problem are solvable in linear time for trestled graphs.


2019 ◽  
Vol 5 (2) ◽  
pp. 69-75
Author(s):  
Marsidi Marsidi ◽  
Ika Hesti Agustin

A graph  in this paper is nontrivial, finite, connected, simple, and undirected. Graph  consists of a vertex set and edge set. Let u,v be two elements in vertex set, and q is the cardinality of edge set in G, a bijective function from the edge set to the first q natural number is called a vertex local antimagic edge labelling if for any two adjacent vertices and , the weight of  is not equal with the weight of , where the weight of  (denoted by ) is the sum of labels of edges that are incident to . Furthermore, any vertex local antimagic edge labelling induces a proper vertex colouring on where  is the colour on the vertex . The vertex local antimagic chromatic number  is the minimum number of colours taken over all colourings induced by vertex local antimagic edge labelling of . In this paper, we discuss about the vertex local antimagic chromatic number on disjoint union of some family graphs, namely path, cycle, star, and friendship, and also determine the lower bound of vertex local antimagic chromatic number of disjoint union graphs. The chromatic numbers of disjoint union graph in this paper attend the lower bound.


Author(s):  
Fairouz Beggas ◽  
Hamamache Kheddouci ◽  
Walid Marweni

In this paper, we introduce and study a new coloring problem of graphs called the double total dominator coloring. A double total dominator coloring of a graph [Formula: see text] with minimum degree at least 2 is a proper vertex coloring of [Formula: see text] such that each vertex has to dominate at least two color classes. The minimum number of colors among all double total dominator coloring of [Formula: see text] is called the double total dominator chromatic number, denoted by [Formula: see text]. Therefore, we establish the close relationship between the double total dominator chromatic number [Formula: see text] and the double total domination number [Formula: see text]. We prove the NP-completeness of the problem. We also examine the effects on [Formula: see text] when [Formula: see text] is modified by some operations. Finally, we discuss the [Formula: see text] number of square of trees by giving some bounds.


2021 ◽  
Vol 52 (1) ◽  
pp. 113-123
Author(s):  
Peter Johnson ◽  
Alexis Krumpelman

The Babai numbers and the upper chromatic number are parameters that can be assigned to any metric space. They can, therefore, be assigned to any connected simple graph. In this paper we make progress in the theory of the first Babai number and the upper chromatic number in the simple graph setting, with emphasis on graphs of diameter 2.


Author(s):  
L. Shahbazi ◽  
H. Abdollahzadeh Ahangar ◽  
R. Khoeilar ◽  
S. M. Sheikholeslami

Let [Formula: see text] be an integer, and let [Formula: see text] be a graph. A k-rainbow dominating function (or [Formula: see text]RDF) of [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the family of all subsets of [Formula: see text] such that for very [Formula: see text] with [Formula: see text], the condition [Formula: see text] is fulfilled, where [Formula: see text] is the open neighborhood of [Formula: see text]. The weight of a [Formula: see text]RDF [Formula: see text] of [Formula: see text] is the value [Formula: see text]. A k-rainbow dominating function [Formula: see text] in a graph with no isolated vertex is called a total k-rainbow dominating function if the subgraph of [Formula: see text] induced by the set [Formula: see text] has no isolated vertices. The total k-rainbow domination number of [Formula: see text], denoted by [Formula: see text], is the minimum weight of the total [Formula: see text]-rainbow dominating function on [Formula: see text]. The total k-rainbow reinforcement number of [Formula: see text], denoted by [Formula: see text], is the minimum number of edges that must be added to [Formula: see text] in order to decrease the total k-rainbow domination number. In this paper, we investigate the properties of total [Formula: see text]-rainbow reinforcement number in graphs. In particular, we present some sharp bounds for [Formula: see text] and we determine the total [Formula: see text]-rainbow reinforcement number of some classes of graphs including paths, cycles and complete bipartite graphs.


Algorithms ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 161 ◽  
Author(s):  
R. Vignesh ◽  
J. Geetha ◽  
K. Somasundaram

A total coloring of a graph G is an assignment of colors to the elements of the graph G such that no two adjacent or incident elements receive the same color. The total chromatic number of a graph G, denoted by χ ′ ′ ( G ) , is the minimum number of colors that suffice in a total coloring. Behzad and Vizing conjectured that for any graph G, Δ ( G ) + 1 ≤ χ ′ ′ ( G ) ≤ Δ ( G ) + 2 , where Δ ( G ) is the maximum degree of G. In this paper, we prove the total coloring conjecture for certain classes of graphs of deleted lexicographic product, line graph and double graph.


Sign in / Sign up

Export Citation Format

Share Document