Complete Radiation Boundary Conditions for Maxwell’s Equations

2021 ◽  
Vol 35 (11) ◽  
pp. 1290-1291
Author(s):  
Thomas Hagstrom ◽  
John Lagrone

We describe the construction, analysis, and implementation of arbitrary-order local radiation boundary condition sequences for Maxwell’s equations. In particular we use the complete radiation boundary conditions which implicitly apply uniformly accurate exponentially convergent rational approximants to the exact radiation boundary conditions. Numerical experiments for waveguide and free space problems using high- order discontinuous Galerkin spatial discretizations are presented.

2012 ◽  
Vol 11 (2) ◽  
pp. 610-628 ◽  
Author(s):  
Thomas Hagstrom ◽  
Eliane Bécache ◽  
Dan Givoli ◽  
Kurt Stein

AbstractLocal approximate radiation boundary conditions of optimal efficiency for the convective wave equation and the linearized Euler equations in waveguide geometry are formulated, analyzed, and tested. The results extend and improve for the convective case the general formulation of high-order local radiation boundary condition sequences for anisotropic scalar equations developed in [4].


1999 ◽  
Author(s):  
Lonny L. Thompson ◽  
Runnong Huan

Abstract Asymptotic and exact local radiation boundary conditions first derived by Hagstrom and Hariharan are reformulated as an auxiliary Cauchy problem for linear first-order systems of ordinary equations on the boundary for each harmonic on a circle or sphere in two- or three-dimensions, respectively. With this reformulation, the resulting radiation boundary condition involves first-order derivatives only and can be computed efficiently and concurrently with standard semi-discrete finite element methods for the near-field solution without changing the banded/sparse structure of the finite element equations. In 3D, with the number of equations in the Cauchy problem equal to the mode number, this reformulation is exact. If fewer equations are used, then the boundary conditions form uniform asymptotic approximations to the exact condition. Furthermore, using this approach, we formulate accurate radiation boundary conditions for the two-dimensional unbounded problem on a circle. Numerical studies of time-dependent radiation and scattering are performed to assess the accuracy and convergence properties of the boundary conditions when implemented in the finite element method. The results demonstrate that the new formulation has dramatically improved accuracy and efficiency for time domain simulations compared to standard boundary treatments.


2016 ◽  
Vol 807 ◽  
Author(s):  
Jennifer Staudenmeyer ◽  
Oliver T. Schmidt ◽  
Ulrich Rist

Linear stability of a laminar boundary-layer flow in a streamwise corner can only be treated with an ansatz that considers two-dimensional eigenfunctions with inhomogeneous boundary conditions in cross-flow directions. It is common practice to use Sommerfeld’s radiation condition with a certain wavenumber $\unicode[STIX]{x1D6FD}$ at the lateral domains of the integration domain which are at the same time the far-field domains for each wall. So far, this radiation condition has been exclusively used in a ‘symmetrical’ way, i.e. with the same $\unicode[STIX]{x1D6FD}$ on either far-field boundary plane. This has led to wave patterns that either enter or leave the corner region from the lateral sides for $\unicode[STIX]{x1D6FD}<0$ or $\unicode[STIX]{x1D6FD}>0$ respectively. Here, an ‘asymmetric’ use of Sommerfeld’s radiation condition is suggested, i.e. $\unicode[STIX]{x1D6FD}<0$ on one far side of the corner and $\unicode[STIX]{x1D6FD}>0$ on the other. With this modification, waves enter the corner area from one side and leave it through the other, i.e. they travel obliquely through the corner. In contrast to before, their amplification rate is always symmetric with respect to $\unicode[STIX]{x1D6FD}=0$ and there is no amplification-rate increase or decrease due to information that either continuously enters the corner from both sides or continuously leaves it through the far sides. The present analysis also shows that the inviscid corner modes are unaffected by the parameters of the far-field radiation boundary conditions. Nevertheless, superposition of two oppositely running single waves obtained by the modified application of the radiation condition leads to a similar wave pattern to that in the case with $\unicode[STIX]{x1D6FD}<0$ on both sides; however, with a slightly smaller amplification rate and a strictly streamwise propagation direction.


2012 ◽  
Vol 20 (02) ◽  
pp. 1240002 ◽  
Author(s):  
THOMAS HAGSTROM

Optimized local radiation boundary conditions to truncate the computational domain by a rectangular boundary have been constructed for acoustic waves propagating into a homogeneous, isotropic far field. Here we try to achieve comparable efficiencies in stratified media and cylindrical coordinates. We find that conditions constructed for homogeneous media are highly effective in the stratified case. On the circle we derive boundary conditions by optimizing a semidiscretized perfectly matched layer. Though we are unsuccessful in matching the accuracies of the Cartesian case, our experiments show that older sequences based on the progressive wave expansion are surprisingly efficient.


2018 ◽  
Vol 52 (3) ◽  
pp. 945-964 ◽  
Author(s):  
Hélène Barucq ◽  
Juliette Chabassier ◽  
Marc Duruflé ◽  
Laurent Gizon ◽  
Michael Leguèbe

This work offers some contributions to the numerical study of acoustic waves propagating in the Sun and its atmosphere. The main goal is to provide boundary conditions for outgoing waves in the solar atmosphere where it is assumed that the sound speed is constant and the density decays exponentially with radius. Outgoing waves are governed by a Dirichlet-to-Neumann map which is obtained from the factorization of the Helmholtz equation expressed in spherical coordinates. For the purpose of extending the outgoing wave equation to axisymmetric or 3D cases, different approximations are implemented by using the frequency and/or the angle of incidence as parameters of interest. This results in boundary conditions called atmospheric radiation boundary conditions (ARBC) which are tested in ideal and realistic configurations. These ARBCs deliver accurate results and reduce the computational burden by a factor of two in helioseismology applications.


Sign in / Sign up

Export Citation Format

Share Document