scholarly journals Assessment of Soil Degradation and Large Scale Soil Mapping Using GIS: A Case Study of Village Ramagarh from Purna Valley, Maharashtra

Agropedology ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
R.K. Naitam ◽  
◽  
V.K. Kharche ◽  
V.V. Gabhane ◽  
T. Bhattacharyya ◽  
...  

The importance of soil-physiographic relationship in soil survey and mapping provide a fair understanding of variability across the landscape needed for sustainable agricultural planning. Keeping this in view the swell- shrink soils of the Ramagarh village of Purna valley in Amravati district, Maharashtra in semi-arid region of central India were studied for their morphological, physical and chemical characteristics and soils were mapped at 1: 8000 scale in geographical information system (GIS) platform. The soils of Ramagarh village are very deep, dark grayish brown to very dark grayish brown in colour, clayey in texture and exhibits medium, moderate, sub angular blocky structure in the surface layers and the subsoil horizons have medium, weak to strong angular blocky structure. Soils are alkaline in reaction, calcareous in nature and low to medium organic carbon content. The pH, CaCO3 and exchangeable sodium percentage (ESP) increase with depth in all the soils. Because of high smectitic clay content and ESP down the profile, these soils have impeded drainage and show ponding of water in the rainy season. The soils of the uplands are classified as Sodic Haplusterts and low land soils belong to Typic Haplusterts category at sub group level. The study indicates that the soils are sodic chemically degraded in 18.2% area of the TGA of the village. The higher ESP was related to corresponding decrease in exchangeable calcium and increase in exchangeable magnesium.

Agropedology ◽  
2019 ◽  
Vol 30 (2) ◽  
Author(s):  
R. Srinivasan ◽  
◽  
R. Vasundhara ◽  
M. Lalitha ◽  
B. Kalaiselvi ◽  
...  

Four typical pedons representing major mango growing soils, developed from granite gneiss parent material were studied for their morphological, physical and chemical properties. The soils were moderately shallow (50-75 cm) to very deep (>150 cm) in depth, loamy sand to sandy clay loam in texture, sub-angular blocky in structure, reddish brown to dark red in colour, slightly acidic to moderately alkaline in reaction, non-saline, very low to high in organic carbon content (0.09 to 1.29%), low AWC (3.36 to 7.80%), low to medium in cation exchange capacity (2.90 to 19.36 cmol (p+) kg-1) and high base saturation (78 to 98%). The soils also had high amounts of coarse fragments in P1 and P2 and high clay content in P4 and P2. Among the exchangeable cations, calcium was found to be high in most of the soils, followed by magnesium, sodium, and potassium. Based on the soil characteristics, the mango growing soils were classified as Typic Haplargids and Typic Paleargids in subgroup level. Varying soil and site characters i.e., poor rainfall, shallow soil depths, excess gravel contents, low AWC, poor nutrient status and severe soil erosion are limiting the growth and development of mango plantation. Developing site-specific soils based suitable management practices can improve the productivity of mango crops.


2021 ◽  
Vol 17 (AAEBSSD) ◽  
pp. 147-149
Author(s):  
P.N. Tripathi ◽  
U.S. Mishra ◽  
Pawan Sirothia ◽  
R.P. Singh

Three representative soil pedonsof northern hills of Chhattisgarh, M.P were morphologically studied, characterized and classified. The soils are very deep, colour ranges from brown (10YR5/3) to dark brown (10YR3/3) and very dark greyish brown (10YR3/2) in different horizons. Fe and calcretes are observed in sub surface horizons. The texture in surface soils varied from clay loam to clay while in pedon 2, the texture was observed sandy clay loam throughout the profile. The soils are calcareous and pH ranged from 7.0 to 7.5. The organic carbon content in these soils were (4.4 g kg-1), low to medium (6.1 g kg-1) in surface and decreased with depth. Cation exchange capacity (CEC) were found high in horizons where clay content was more. Based on morphological, physical and chemical properties P1 and P3 were classified as VerticHaplustalfs and pedon (P2) was placed under Typic Haplustepts.


Author(s):  
D. Basford ◽  
A. Eleftheriou

In an attempt to describe the physical and chemical characteristics of the sediments as an environment for the invertebrate benthos, a total of 273 stations covering the sector from 56° N to 61° N in the North Sea was sampled. The sediment samples which were collected by grab and corer were analysed for particle size (as well as silt-clay content and sorting), organic carbon, plant pigments and trace metals (Cd, Pb, Zn, Ni, Co, Cu). On a smaller scale a few stations were sampled for redox potential, pH and pesticides.Taking into account the geological history and the on-going hydrographic processes, explanations for the formation of the sedimentary provinces in the North Sea were provided. The sediments were predominantly fine to medium sand, but there was a depth-related gradient with the finer grades, organic carbon and, to a lesser extent, plant pigment being found in the deeper sedimentation basins of the Fladen Grounds and Norwegian Trench.Trace metals and pesticide contaminants associated with the finer organic and inorganic fractions were higher in the sediments of the above deeper areas as well as in the vicinity of estuaries. It could be concluded that despite the enhanced concentrations of Cd, Ni, Pb and Co, at the east of Shetland, which were due to a geochemical anomaly, there was no evidence of any important or large-scale contamination of the North Sea as a whole.


Soil Research ◽  
1994 ◽  
Vol 32 (5) ◽  
pp. 1109 ◽  
Author(s):  
RJ Harper ◽  
RJ Gilkes

The incidence and severity of water repellency was related to five soil class (FC I-V), based on the field texture and dry consistence of the soil surface horizons, derived from a soil survey near Jerramungup, Western Australia. Water repellency was most severe on the FC I soils (median clay content 1.5%), with 66% of samples having water repellency based on the water drop penetration time (WDPT) test >10 s. Corresponding values for the FC II and III soils (2.5%, 4.0% clay) were 37% and 20%. Water repellency did not occur on the most clayey FC IV (8.1% clay) and FC V (22.1% clay) soils. Following stratification of Ap horizon soils by 1% increments of clay content, highly significant linear relationships occurred between log [water drop penetration time (WDPT)] and log [organic carbon (OC)] for the 1-2, 2-3 and 3-4% clay classes, these respectively explaining 50, 35 and 37% of the variation in water repellency. The role of organic carbon in promoting water repellency decreases markedly with increasing clay content, with WDPT being proportional to OC4.5, OC3.9 and OC3.0 for each of these clay classes. A multivariate relationship using measures of amorphous iron, clay and organic matter explained 63% of the variation in water repellency, and this multivariate dependency provides an explanation of the poor bivariate relationships between either clay or organic carbon content and water repellency reported in previous studies. There is a strong geomorphic control of the clay content in the soil surface horizons. Given the effect that clay content has on water repellency, the susceptibility of soils to water repellency can be mapped across farms, with the actual expression of water repellency depending on soil organic matter content, and hence land use. Such discrimination will allow the prediction of water erosion hazard and identify soils requiring ameliorative treatments.


2021 ◽  
Vol 24 ◽  
pp. e00367
Author(s):  
Patrick Filippi ◽  
Stephen R. Cattle ◽  
Matthew J. Pringle ◽  
Thomas F.A. Bishop

2007 ◽  
Vol 20 (7) ◽  
pp. 1161-1173 ◽  
Author(s):  
Musa Kilinc ◽  
Jason Beringer

Abstract In this paper the authors explore the spatial and temporal patterns of lightning strikes in northern Australia for the first time. In particular, the possible relationships between lightning strikes and elevation, vegetation type, and fire scars (burned areas) are examined. Lightning data provided by the Bureau of Meteorology were analyzed for a 6-yr period (1998–2003) over the northern, southern, and coastal regions of the Northern Territory (NT) through the use of Geographical Information Systems (GIS) to determine the spatial and temporal characteristics of lightning strikes. It was determined that the highest densities of lightning strikes occurred during the monsoon transitional period (dry to wet) and during the active monsoon periods, when atmospheric moisture is highest. For the period of this study, lightning was far more prevalent over the northern region (1.21 strikes per km2 yr−1) than over the southern (0.58 strikes per km2 yr−1) and coastal regions (0.71 strikes per km2 yr−1). Differences in vegetation cover were suggested to influence the lightning distribution over the northern region of the NT, but no relationship was found in the southern region. Lightning strikes in the southern region showed a positive relationship with elevations above 800 m, but no relationship was found in the northern region, which could be due to the low-lying topography of the area. A comparison of lightning densities between burned and unburned areas showed high variability; however, the authors suggest that, under ideal atmospheric conditions, large-scale fire scars (>500 m) could produce lightning strikes triggered by either enhanced free convection or mesoscale circulations.


Sign in / Sign up

Export Citation Format

Share Document