Issues of organizing computations in multicomputersystems with the software-controlled failure- and fault-tolerance. Part 1

Author(s):  
I.V. Asharina

This three-part paper analyzes existing approaches and methods of organizing failure- and fault-tolerant computing in distributed multicomputer systems (DMCS), identifies and provides rationale for a list of issues to be solved. We present the concept of fault tolerance proposed by A. Avizienis, explicate its dissimilarity from the modern concept and the reason for its inapplicability with regard to modern distributed multicomputer systems. We justify the necessity to refine the definition of fault tolerance approved by the State Standards, as well as the necessity to specify three input parameters to be taken into account in the DMCS design methods: permitted fault models, permitted multiplicity of faults, permitted fault sequence capabilities. We formulate the questions that must be answered in order to design a truly reliable, fault-tolerant system and consider the application areas of the failure- and fault-tolerant control systems for complex network and distributed objects. System, functional, and test diagnostics serve as the basis for building unattended failure- and fault-tolerant systems. The concept of self-managed degradation (with the DMCS eventually proceeding to a safe shutdown at a critical level of degradation) is a means to increase the DMCS active life. We consider the issues related to the diagnosis of multiple faults and present the main differences in ensuring fault tolerance between systems with broadcast communication channels and systems with point-to-point communication channels. The first part of the work mainly deals with the analysis of existing approaches and methods of organizing failure- and fault-tolerant computing in DMCS and the definition of the concept of fault-tolerance.

Author(s):  
I.V. Asharina

This three-part paper analyzes existing approaches and methods of organizing failure- and fault-tolerant computing in distributed multicomputer systems (DMCS), identifies and provides rationale for a list of issues to be solved. We review the application areas of failure- and fault- tolerant control systems for complex network and distributed objects. The third part proceeds with the study of the problems of organizing failure- and fault-tolerant computing in distributed multicomputer systems (DMCS), carried out in parts I and II of this work, and deals with the issues related to the diagnosis of multiple faults. The paper describes the main differences in ensuring fault tolerance in systems with broadcast communication channels and point-to-point communication channels.


Author(s):  
I.V. Asharina

This three-part paper analyzes existing approaches and methods of organizing failure- and fault-tolerant computing in distributed multicomputer systems (DMCS), identifies and provides rationale for a list of issues to be solved. We review the application areas of failure- and fault- tolerant control systems for complex network and distributed objects. The second part further investigates the issues of organizing failure- and fault- tolerance in the DMCS. The systemic, functional, and test diagnostics are viewed as the basis for building unattended failure- and fault-tolerant systems. We introduce the concept of self-managed degradation (when the DMCS eventually proceeds to a safe shutdown at a critical level of degradation) as a means to increase the DMCS active life.


Basically, to reduce the failure rate in the system, we need to introduce the fault tolerant system. Because of multiple faults occurred in the system, the system will increase the area. To employ the adder architecture, different algorithms are used in digital signal processing. By introducing the fault tolerant system, the reliability of the proposed system will increase. So in this paper we introduced the design of fault tolerant razor flip flop using SKLANSKY adder for delay reduction in FIR filter. The razor flip flop will increase the energy efficiency of proposed system. This flip flop will store the information by latching the circuit. The SKLANSKY adder is the part of arithmetic logic unit. In proposed system, all bits are summed and followed to the fault tolerance system,. This fault tolerance system will detect the error and give efficient output. Hence compared to existed system, the proposed system gives high performance and accuracy in terms of delay.


Author(s):  
Abderraouf Maoudj ◽  
Abdelfetah Hentout ◽  
Brahim Bouzouia ◽  
Redouane Toumi

Manipulator robots are widely used in many fields to replace humans in complex and risky environments. However, in some particular environments the robot is prone to failure, resulting in decreased performance. In such environments, it is extremely difficult to repair the robot which interrupts the execution process. Therefore, fault tolerance plays an important role in industrial manipulators applications. In this paper, the key problems related to fault-tolerance and path planning of manipulator robots under joints failures are handled within an on-line fault-tolerant fuzzy-logic based path planning approach for high degree-of-freedom robots. This approach provides an alternative to using mathematical models to control such robots, and improves tolerance to certain faults and mechanical failures. The controller consists of two fuzzy units (i) the first unit, Fuzzy_Path_Planner, is responsible of path planning; (ii) the second unit, Fuzzy_Obstacle_Avoidance, is conceived for obstacles avoidance. Moreover, the proposed approach is capable of repelling the manipulator away from both local minima and limit cycle problems. Finally, to validate the proposed approach and show its performances and effectiveness, different tests are carried out on two six degree-of-freedom manipulator robots (ULM and PUMA560 robots), accomplishing point-to-point tasks, with and without considering some joints failures.


Robotica ◽  
2016 ◽  
Vol 35 (6) ◽  
pp. 1397-1414 ◽  
Author(s):  
Hui Du ◽  
Feng Gao

SUMMARYThe six-legged robot Octopus is designed for nuclear disaster relief missions. When the robot suffers from failures, its performance can be significantly affected. Thus, fault tolerance is essential for walking and operating in environments inaccessible to humans. The current fault-tolerant gaits for legged robots usually either initially lock the entire broken leg or just abandon the broken leg, but then fail to take full advantage of the normal actuators on the broken leg and add extra constraints. As the number of broken legs increases, the robot will no longer be able to walk using the existing fault-tolerant gaits. To solve this problem, screw theory is used for analyzing the remaining mobility after failure. Based on the analysis, a method of motion planning through fault-tolerant Jacobian matrices, which are linear, is presented. This method can enable the robot to accomplish desired movement using broken legs along with other certain concomitant motions as compensation. Finally, experiments and simulations of multiple faults demonstrate the real effects on the Octopus robot.


2019 ◽  
Vol 2 (1) ◽  
pp. 43-52
Author(s):  
Alireza Alikhani ◽  
Safa Dehghan M ◽  
Iman Shafieenejad

In this study, satellite formation flying guidance in the presence of under actuation using inter-vehicle Coulomb force is investigated. The Coulomb forces are used to stabilize the formation flying mission. For this purpose, the charge of satellites is determined to create appropriate attraction and repulsion and also, to maintain the distance between satellites. Static Coulomb formation of satellites equations including three satellites in triangular form was developed. Furthermore, the charge value of the Coulomb propulsion system required for such formation was obtained. Considering Under actuation of one of the formation satellites, the fault-tolerance approach is proposed for achieving mission goals. Following this approach, in the first step fault-tolerant guidance law is designed. Accordingly, the obtained results show stationary formation. In the next step, tomaintain the formation shape and dimension, a fault-tolerant control law is designed.


Fault Tolerant Reliable Protocol (FTRP) is proposed as a novel routing protocol designed for Wireless Sensor Networks (WSNs). FTRP offers fault tolerance reliability for packet exchange and support for dynamic network changes. The key concept used is the use of node logical clustering. The protocol delegates the routing ownership to the cluster heads where fault tolerance functionality is implemented. FTRP utilizes cluster head nodes along with cluster head groups to store packets in transient. In addition, FTRP utilizes broadcast, which reduces the message overhead as compared to classical flooding mechanisms. FTRP manipulates Time to Live values for the various routing messages to control message broadcast. FTRP utilizes jitter in messages transmission to reduce the effect of synchronized node states, which in turn reduces collisions. FTRP performance has been extensively through simulations against Ad-hoc On-demand Distance Vector (AODV) and Optimized Link State (OLSR) routing protocols. Packet Delivery Ratio (PDR), Aggregate Throughput and End-to-End delay (E-2-E) had been used as performance metrics. In terms of PDR and aggregate throughput, it is found that FTRP is an excellent performer in all mobility scenarios whether the network is sparse or dense. In stationary scenarios, FTRP performed well in sparse network; however, in dense network FTRP’s performance had degraded yet in an acceptable range. This degradation is attributed to synchronized nodes states. Reliably delivering a message comes to a cost, as in terms of E-2-E. results show that FTRP is considered a good performer in all mobility scenarios where the network is sparse. In sparse stationary scenario, FTRP is considered good performer, however in dense stationary scenarios FTRP’s E-2-E is not acceptable. There are times when receiving a network message is more important than other costs such as energy or delay. That makes FTRP suitable for wide range of WSNs applications, such as military applications by monitoring soldiers’ biological data and supplies while in battlefield and battle damage assessment. FTRP can also be used in health applications in addition to wide range of geo-fencing, environmental monitoring, resource monitoring, production lines monitoring, agriculture and animals tracking. FTRP should be avoided in dense stationary deployments such as, but not limited to, scenarios where high application response is critical and life endangering such as biohazards detection or within intensive care units.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2210
Author(s):  
Luís Caseiro ◽  
André Mendes

Fault-tolerance is critical in power electronics, especially in Uninterruptible Power Supplies, given their role in protecting critical loads. Hence, it is crucial to develop fault-tolerant techniques to improve the resilience of these systems. This paper proposes a non-redundant fault-tolerant double conversion uninterruptible power supply based on 3-level converters. The proposed solution can correct open-circuit faults in all semiconductors (IGBTs and diodes) of all converters of the system (including the DC-DC converter), ensuring full-rated post-fault operation. This technique leverages the versatility of Finite-Control-Set Model Predictive Control to implement highly specific fault correction. This type of control enables a conditional exclusion of the switching states affected by each fault, allowing the converter to avoid these states when the fault compromises their output but still use them in all other conditions. Three main types of corrective actions are used: predictive controller adaptations, hardware reconfiguration, and DC bus voltage adjustment. However, highly differentiated corrective actions are taken depending on the fault type and location, maximizing post-fault performance in each case. Faults can be corrected simultaneously in all converters, as well as some combinations of multiple faults in the same converter. Experimental results are presented demonstrating the performance of the proposed solution.


2021 ◽  
Vol 9 (6) ◽  
pp. 574
Author(s):  
Zhuo Liu ◽  
Tianhao Tang ◽  
Azeddine Houari ◽  
Mohamed Machmoum ◽  
Mohamed Fouad Benkhoris

This paper firstly adopts a fault accommodation structure, a five-phase permanent magnet synchronous generator (PMSG) with trapezoidal back-electromagnetic forces, in order to enhance the fault tolerance of tidal current energy conversion systems. Meanwhile, a fault-tolerant control (FTC) method is proposed using multiple second-order generalized integrators (multiple SOGIs) to further improve the systematic fault tolerance. Then, additional harmonic disturbances from phase current or back-electromagnetic forces in original and Park’s frames are characterized under a single-phase open condition. Relying on a classical field-oriented vector control scheme, fault-tolerant composite controllers are then reconfigured using multiple SOGIs by compensating q-axis control commands. Finally, a real power-scale simulation setup with a gearless back-to-back tidal current energy conversion chain and a small power-scale laboratory prototype in machine side are established to comprehensively validate feasibility and fault tolerance of the proposed method. Simulation results show that the proposed method is able to suppress the main harmonic disturbances and maintain a satisfactory fault tolerance when third harmonic flux varies. Experimental results reveal that the proposed model-free fault-tolerant design is simple to implement, which contributes to better fault-tolerant behaviors, higher power quality and lower copper losses. The main advantage of the multiple SOGIs lies in convenient online implementation and efficient multi-harmonic extractions, without considering system’s model parameters. The proposed FTC design provides a model-free fault-tolerant solution to the energy harvested process of actual tidal current energy conversion systems under different working conditions.


Sign in / Sign up

Export Citation Format

Share Document