PROJECT FOR THE CREATION OF A PILOT PRODUCTION OF STORM SEWER ELEMENTS MADE OF COMPOSITE MATERIALS BASED ON NON-WOVEN FABRICS

Author(s):  
Yu. M. Treschalin ◽  
M.Yu. Treschalin
2021 ◽  
pp. 152808372098410
Author(s):  
Mehmet Korkmaz ◽  
Ayşe Okur ◽  
Ahmad Rashed Labanieh ◽  
François Boussu

Composite materials which are reinforced with 3D warp interlock fabrics have outstanding mechanical properties such as higher delamination resistance, ballistic damage resistance and impact damage tolerance by means of their improved structural properties. Textile reinforcements are exposed to large deformations in the production stage of composite materials which have complex shape. Although good formability properties of 3D warp interlock fabrics in forming process were already proven by recent studies, further information is needed to elucidate forming behaviours of multi-layer fabrics which is produced with high stiffness yarns like carbon. In this study, 3D warp interlock carbon fabrics were produced on a prototype weaving loom and the same carbon yarn was used in two fabric directions with equal number of yarn densities. Fabrics were differentiated with regard to the presence of stuffer warp yarn, weave pattern and parameters of binding warp yarn which are angle and depth. Therefore, the effect of fabric architecture on the mechanical and formability properties of 3D warp interlock carbon fabrics could be clarified. Three different breaking behaviours of fabrics were detected and they were correlated with crimp percentages of yarn groups. In addition, the bending and shear deformations were analysed in view of parameters of fabric architectures. Two distinct forming behaviours of fabrics were determined according to the distribution of deformation areas on fabrics. Moreover, the optimal structure was identified for forming process considering the fabric architecture.


Author(s):  
A.A. Shavnev ◽  
◽  
V.G. Babashov ◽  
N.M. Varrik ◽  
◽  
...  

The article provides an overview of the continuous alumina-based fibers currently produced as well as their production technologies, major manufacturers and applications. Ceramic fibers are relatively new species and are of particular interest at the modern stage of technology development, since their advantages make them promising in the creation of new types of composite materials. A large number of polycrystalline oxide fibers have been developed, both for refractory insulation and for reinforcing composites.


2005 ◽  
Vol 495-497 ◽  
pp. 1675-1680
Author(s):  
G. Langelaan ◽  
S. Deprez ◽  
Ignaas Verpoest ◽  
Paul van Houtte

The orientation distribution of fibres (morphological texture) in a composite is very important in determining the properties of the material. Therefore, methods which can provide quantitative descriptions of the morphological texture are essential. One approach to determining the morphological texture function (MTF) is to measure the orientation distribution of the crystals in the fibres. Since many types of reinforcing fibres are crystalline and textured (i.e. carbon fibres, whiskers, etc.) this approach may be interesting for commercial/industrial applications. For this technique to be applied, the crystallographic texture intrinsic to the fibres must be determined and subsequently measurements of the crystallographic texture should be made in the composite. The morphological texture can then be calculated by a deconvolution of the composite texture with the fibre’s intrinsic texture. In this paper, morphological textures are determined in woven fabrics made from carbon fibres embedded in a polymer matrix. Straight fibres removed from the fabric serve as the reference material for the deconvolution. It is demonstrated that this technique is applicable and can resolve the orientation distribution to an accuracy greater than is needed for determining the elastic properties.


2012 ◽  
Vol 445 ◽  
pp. 189-194
Author(s):  
Enver Bulent Yalcin ◽  
Volkan Gunay ◽  
Muzeyyen Marsoglu

The study presents the need for instrumented testing to optimizing materials against impact forces. The objective of the study is how the impact behaviour of composite materials is investigated by slow and high speed impact tests. Instron Dynatup 9250HV and Instron Dynatup 8150 Impact test machines (Fig.1.) are used which are located in TUBITAK-MRC, Materials Institute , Impact Test Laboratory". The damage process in composite materials under low and high velocity impact loading and the impact energy-displacement properties of the composite materials were investigated. Composite samples were produced by woven fabrics. The results are given as graphs and tables. The Impulse Data Acquisition software is used to send the data to computer.


2021 ◽  
Vol 1203 (2) ◽  
pp. 022093
Author(s):  
Valery Varentsov ◽  
Valentina Kuzina ◽  
Alexander Koshev ◽  
Valentina Varentsova

Abstract The report provides data on the electrochemical modification of carbon-graphite fibers as the basis for the creation of composite materials. The results of studies of the electrodeposition of metals on pre-electrochemically modified carbon fiber materials (CFM) in order to obtain composite materials based on them are presented. The use of CFM for the creation of composite materials is associated with the possibility of deposition of metals, alloys or their compounds on the surface of their constituent fibers. Electrochemical treatment in aqueous solutions of electrolytes is a promising method for modifying the surface properties of carbon materials, including in order to improve their adhesive properties. Preliminary electrochemical modification of carbon fiber materials in indifferent solutions of electrolytes made it possible to obtain composite and nanocomposite materials with good adhesion of the electrodeposited metal to the surface of the fibers of carbon materials.When metals are deposited on carbon fiber materials, it is necessary to solve the problem of applying a uniform metal deposit or with a certain profile in the thickness of the material. In this case, it is effective to use methods of mathematical modeling of metal deposition processes in a flowing three-dimensional electrode. Depending on the selected modes of deposition of metal sediment on the CFM, some electrochemical parameters of the process and system may be dependent on both the time of the process and the thickness coordinate of the electrode. This is especially true for the value of the resistivity of the solid phase of the system, that is, carbon-graphite fibrous material. Other electrochemical parameters, such as the specific electrode surface, the exchange current and the transfer coefficient of the electrochemical reaction, the porosity of the material, etc., can also change during the electrodeposition of the metal on the CFM. It is proposed to take into account the change in the characteristic properties of modified carbon fiber materials in the mathematical modeling of the processes of electrodeposition of metals on carbon fiber materials in order to determine the technological parameters to improve the efficiency of the properties of composite materials. In order to implement mathematical models used in the calculation of electrochemical processes in the volume and on the surface of carbon fiber materials, a set of programs based on modern computational methods and programming languages has been developed.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4024
Author(s):  
Polina Tyubaeva ◽  
Ivetta Varyan ◽  
Anton Lobanov ◽  
Anatoly Olkhov ◽  
Anatoly Popov

The creation of innovative fibrous materials based on biodegradable semicrystalline polymers and modifying additives is an urgent scientific problem. In particular, the development of biomedical materials based on molecular complexes and biopolymers with controlled properties is of great interest. The paper suggests an approach to modifying the structure and properties of the composite materials based on poly(3-hydroxybutyrate) (PHB) obtained by the electrospinning method using molecular complexes of hemin. The introduction of 1–5 wt. % of hemin has a significant effect on the supramolecular structure, morphology and properties of PHB-based fibers. Changes in the supramolecular structure intensified with the increasing hemin concentration. On the one hand, a decrease in the fraction of the crystalline phase by 8–10% was observed. At the same time, there is a decrease in the density of the amorphous phase by 15–70%. Moreover, the addition of hemin leads to an improvement in the strength characteristics of the material: the elongation at break increased by 1.5 times, and in the tensile strength, it increased by 3 times. The antimicrobial activity of the hemin-containing composite materials against Escherichia coli and Staphylococcus aureus was confirmed. The obtained materials are proposed to be used in the creation of composite systems for regenerative medicine.


2021 ◽  
Vol 1022 ◽  
pp. 152-158
Author(s):  
Vitaly Evdokimovich Rogov ◽  
Anna S. Chermoshentseva

In all industries, composite materials with a multilayer structure are widely used. Each layer of the composite material is a directional fiber impregnated with a binder polymer. Layered composite materials, possessing unique properties and high manufacturability, have a significant drawback - the presence of interlayer defects in material, which reduces the scope of their application. One of the perspective directions for reducing the process of interlayer fracture in composite materials is the use of bulk textile material, which is the reinforcement of the entire multilayer material. This article presents an overview of some researches that provide basic information about the creation of perspective composite material made of volume fabric and materials based on them. We provided open information about manufacturers of 3D fabric materials. We carried out experimental tests with composite materials, which showed that material with transverse threads is 30-35% stronger during end impact than a composite material without reinforcement.


Sign in / Sign up

Export Citation Format

Share Document