scholarly journals Nitrogen use efficiency in crops with new and available technologies

2021 ◽  
Vol 23 (3) ◽  
pp. 256-266
Author(s):  
D BLAISE ◽  

Among fertilizers, nitrogen (N) is the one that is used in the largest amounts mainly due to immediate response to the fertilizer-N application. However, the N use efficiency (NUE) is very low leading to high production costs and also a threat to the environment. Therefore, improving NUE is imperative. The 4 R’s (right quantity, right time, right method and right source) should be considered as the first step for enhancing NUE. Best management practices (BMP’s) of production and protection need to be adopted in order to achieve high NUE. Integration of novel N sources and nanofertilizers and better N fertilization products would lead to high NUE. Furthermore, novel techniques such as Precision Nutrient Management and Variable Rate Application to time nutrient application with crop need, and remote sensing are upcoming technologies that will bring about considerable savings in fertilizer-N. Further we should also account for plant physiological processes, including the diversity of mineral nutrient uptake mechanisms, their translocation and metabolism in order to breed and develop crop cultivars that are efficient N users.

2018 ◽  
Vol 18 ◽  
pp. 41-50
Author(s):  
Chandika Lama ◽  
Santosh Marahatta

A field experiment was conducted in sub humid climate of inner terai of Nepal to determine the productivity and economics of rice under direct seeded and transplanted methods under different nutrient management in strip plot design with three replications in 2013, rainy season. The treatment consisted of three tillage methods, conventional tillage direct seeded rice, unpuddled transplanted rice and Puddled transplanted rice and five nutrient management practices Recommended Nitrogen(N), Phosphorous(P) and Potassium(K), 100:30:30 Kg NPK ha-1; Leaf color chart based N + Recommended PK; Farmers’ Practice, 48.30:34.50:0.00 Kg NPK ha-1; 0N + Recommended PK and 150% of Recommended NPK. The result revealed that grain and straw yield were not significant due to crop establishment methods. LCC based N application yield was comparable with 150% of Rec. NPK and Rec. NPK. Saving N on LCC based N management with 41.56 Kg ha-1 and 9.44 Kg N ha-1 over 150% of recommended NPK recommended NPK respectively. Adoption of CT-DSR reduced the total cost of cultivation by 30.13% and B:C ratio by 45.95% over P-TPR. The lower cost, higher benefit and the same production, revealed that LCC based N management under CT-DSR was the best management practices over the conventional P-TPR.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2320
Author(s):  
Raj K. Jat ◽  
Deepak Bijarniya ◽  
Suresh K. Kakraliya ◽  
Tek B. Sapkota ◽  
Manish Kakraliya ◽  
...  

Intensive tillage-based production systems coupled with inefficient fertilizer management practices have led to increased production costs, sub-optimal productivity, and significant environmental externalities. Conservation agriculture (CA) is being increasingly advocated as a management strategy to overcome these issues but precision nutrient management under the CA-based maize-wheat system is rarely studied. Two year’s (2014–2015 and 2015–2016) research was conducted at the research farm of BISA, Pusa, Bihar, India to develop precision nutrient management practices for CA-based management in the maize-wheat system. Seven treatment combinations involving (i) tillage (conventional tillage; CT & permanent beds; PB) and (ii) nutrient management rates, application methods (farmers’ fertilizer practices; FFP, state recommended dose of fertilizer; SR and precision nutrient management using Nutrient Expert tool; NE and GreenSeeker; (GS), applied using two methods; broadcasting (B) and drilling (D)) were investigated for multiple parameters. The results showed that NE, NE+GS, and SR-based nutrient management tactics with drilling improved crop yields, nutrient-use efficiency (NUE), and economic profitability relative to NE-broadcasting, SR broadcasting, and FFP broadcasting methods. Maize-wheat system productivity and net returns under NE+GS-drilling on PB were significantly higher by 31.2%, 49.7% compared to FFP-broadcasting method, respectively. Total global warming potential (GWP) was lower in the PB-based maize-wheat system coupled with precision nutrient management compared to CT-based maize-wheat system with FFP. Higher (15.2%) carbon sustainability index (CSI) was recorded with NE-drilling compared to FFP-broadcasting method. Results suggests that PB-based maize-wheat system together with precision nutrient management approaches (NE+GS+drilling) can significantly increase crop yields, NUE, and profitability while reducing the emission of greenhouse gases (GHGs) from maize-wheat systems in eastern Indo Gangetic Plains (IGP).


Author(s):  
Tapan Gorai ◽  
Pankaj Kumar Yadav ◽  
Gopal Lal Choudhary ◽  
Anil Kumar

Present irrational crop and nutrient management practices have raised several concerns of high merit. The concerns include low factor productivity or nutrient use efficiency (NUE), declining crop productivity, farmer’s profitability, impaired soil health and ecological contamination. Site-specific nutrient management (SSNM), after considering indigenous nutrient supplying capacity of soil using plant and soil analysis, can feed the crop in synchrony with its nutrient requirement in different physiological growth stages. Besides, several modern geospatial techniques viz. remote sensing techniques, geographic information system (GIS), global positioning system (GPS), proximal sensing; information and communication technologies (ICTs) including decision support system, smartphone apps and web services can also assist in diagnosis of soil and crop nutrient status, fertilizer recommendation and its dissemination to users. Optical and thermal remote sensing can effectively detect crop stress including nitrogen (N) deficiency through several vegetation indices especially normalized difference vegetation index (NDVI). GIS techniques with spatial data acquired by GPS, can create spatial variability map and management zone (MZ) for precise farm operations including variable rate fertilization. Proximal crop sensors viz. chlorophyll meter and Green Seeker can also recognize crop nitrogen status and promote fertilizer N use efficiency by synchronizing fertilizer N supply with crop requirement. Even proximal soil sensing using electromagnetic radiation and contact electrode can estimate soil properties like soil pH, electrical conductivity, major and micronutrient content. Several decision support systems such as QUEFTS based model, crop manager, nutrient expert® and smartphone apps like ‘crop doctor’ can suggest for precise application of agro-inputs to rural youths and farmers. Yield monitoring and mapping tool can generate historical GIS database for spatial variability of crop yield under farmers’ crop management practices and assessment of nutrient uptake. Variable rate machinery based on variability map and sensor technologies can also be used for fertilization under different management zones. Therefore, SSNM technologies can enhance NUE; improve and sustain crop productivity, profitability; avoid nutrient wastage; maintain good soil health and environmental safety.


2006 ◽  
Vol 16 (3) ◽  
pp. 408-412 ◽  
Author(s):  
Nicolas Tremblay ◽  
Carl Bélec

Weather is the primary driver of both plant growth and soil conditions. As a consequence of unpredictable weather effects on crop requirements, more inputs are being applied as an insurance policy. Best management practices (BMPs) are therefore about using minimal input for maximal return in a context of unpredictable weather events. This paper proposes a set of complementary actions and tools as BMP for nitrogen (N) fertilization of vegetable crops: 1) planning from an N budget, 2) reference plot establishment, and 3) crop sensing prior to in-season N application based on a saturation index related to N requirement.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 777
Author(s):  
Erythrina Erythrina ◽  
Arif Anshori ◽  
Charles Y. Bora ◽  
Dina O. Dewi ◽  
Martina S. Lestari ◽  
...  

In this study, we aimed to improve rice farmers’ productivity and profitability in rainfed lowlands through appropriate crop and nutrient management by closing the rice yield gap during the dry season in the rainfed lowlands of Indonesia. The Integrated Crop Management package, involving recommended practices (RP) from the Indonesian Agency for Agricultural Research and Development (IAARD), were compared to the farmers’ current practices at ten farmer-participatory demonstration plots across ten provinces of Indonesia in 2019. The farmers’ practices (FP) usually involved using old varieties in their remaining land and following their existing fertilizer management methods. The results indicate that improved varieties and nutrient best management practices in rice production, along with water reservoir infrastructure and information access, contribute to increasing the productivity and profitability of rice farming. The mean rice yield increased significantly with RP compared with FP by 1.9 t ha–1 (ranges between 1.476 to 2.344 t ha–1), and net returns increased, after deducting the cost of fertilizers and machinery used for irrigation supplements, by USD 656 ha–1 (ranges between USD 266.1 to 867.9 ha–1) per crop cycle. This represents an exploitable yield gap of 37%. Disaggregated by the wet climate of western Indonesia and eastern Indonesia’s dry climate, the RP increased rice productivity by 1.8 and 2.0 t ha–1, with an additional net return gain per cycle of USD 600 and 712 ha–1, respectively. These results suggest that there is considerable potential to increase the rice production output from lowland rainfed rice systems by increasing cropping intensity and productivity. Here, we lay out the potential for site-specific variety and nutrient management with appropriate crop and supplemental irrigation as an ICM package, reducing the yield gap and increasing farmers’ yield and income during the dry season in Indonesia’s rainfed-prone areas.


2001 ◽  
Vol 32 (7-8) ◽  
pp. 1265-1292 ◽  
Author(s):  
Javier Z. Castellanos ◽  
Salvador Villalobos ◽  
Jorge A. Delgado ◽  
Jesus Muñoz-Ramos ◽  
Anacleto Sosa ◽  
...  

2003 ◽  
Vol 48 (7) ◽  
pp. 191-196 ◽  
Author(s):  
P.J. Goyne ◽  
G.T. McIntyre

The Cotton and Grains Adoption Program of the Queensland Rural Water Use Efficiency Initiative is targeting five major irrigation regions in the state with the objective to develop better irrigation water use efficiency (WUE) through the adoption of best management practices in irrigation. The major beneficiaries of the program will be industries, irrigators and local communities. The benefits will flow via two avenues: increased production and profit resulting from improved WUE and improved environmental health as a consequence of greatly reduced runoff of irrigation tailwater into rivers and streams. This in turn will reduce the risk of nutrient and pesticide contamination of waterways. As a side effect, the work is likely to contribute to an improved public image of the cotton and grain industries. In each of the five regions, WUE officers have established grower groups to assist in providing local input into the specific objectives of extension and demonstration activities. The groups also assist in developing growersÕ perceptions of ownership of the work. Activities are based around four on-farm demonstration sites in each region where irrigation management techniques and hardware are showcased. A key theme of the program is monitoring water use. This is applied both to on-farm storage and distribution as well as to application methods and in-field management. This paper describes the project, its activities and successes.


Author(s):  
Ashok Mishra ◽  
B. S. Rath ◽  
S. K. Mukhi ◽  
S. S. Mishra ◽  
S. K. Mohanty ◽  
...  

The effect of five nutrient management practices on the yield and yield attributes, nutrient uptake and rain water use efficiency in four greengram varieties (Dhauli, Pusa-9531, OBGG-52 and Nayagarh Local) in rainfed upland inceptisol with sandy- loam soil was studied in factorial RBD with three replications during Kharif 2009 to 2012. Significant variety × nutrient interaction was observed with respect to seed yield, nodulation and other yield attributing characters. Based on the mean data over four years (2009-2012), highest seed yield of 5.84 q ha-1 was observed in Pusa 9531 with lime+50% organic+ 50% inorganic treatment followed by Dhauli (5.53 q ha-1) with the same nutrient treatment. Highest RWUE was found in Lime + 50% organic + 50% inorganic treatment in all the varieties followed by 100% organic treatment in Dhauli, Pusa-9531 and OBGG-52 but in 50% organic + 50% inorganic treatment in case of Nayagarh Local. The uptake of N, P and K was also observed to be the highest in Lime + 50% organic + 50% inorganic treatment in all the varieties.


Sign in / Sign up

Export Citation Format

Share Document