Island in the Stream: Oceanography and Fisheries of the Charleston Bump

<em>Abstract.</em>—Recent observations from trawling and submersibles have shown several species of cephalopods to be common in slope-waters of the western North Atlantic Ocean. The slope-water cephalopods include the commercially-important genus <em> Illex</em>, taxonomy of which remains troubling in the area off Charleston because of the possibility that <em> I. oxygonius </em>is a hybrid. Other common species include another ommastrephid <em> Ornithoteuthis antillarum</em>, single species of <em> Mastigoteuthis</em>, <em> Brachioteuthis</em>, and <em> Pholidoteuthis</em>, several cranchiids, histioteuthids, and sepiolids, two octopodids, the pelagic incirrate octopod <em> Haliphron atlanticus</em>, and the cirrate octopod <em> Stauroteuthis syrtensis</em>. Behavior and distribution of these species contrast with those of truly open-ocean cephalopods, which also are present in slope waters. In-situ observations have shown that several of the squids are more strongly associated with the bottom than was previously supposed and that many of the slope-water cephalopods exhibit unexpected behaviors.

2014 ◽  
Vol 14 (5) ◽  
pp. 7025-7066 ◽  
Author(s):  
W. C. Keene ◽  
J. L. Moody ◽  
J. N. Galloway ◽  
J. M. Prospero ◽  
O. R. Cooper ◽  
...  

Abstract. Since the 1980s, emissions of SO2 and NOx (NO + NO2) from anthropogenic sources in the United States (US) and Europe have decreased significantly suggesting that the export of oxidized S and N compounds from surrounding continents to the atmosphere overlying North Atlantic Ocean (NAO) has also decreased. The chemical compositions of aerosols and precipitation sampled daily on Bermuda (32.27° N, 64.87° W) from 1989 to 1997 and from 2006 to 2009 were evaluated to quantify the magnitudes, significance, and implications of associated tends in atmospheric composition. The chemical data were stratified based on FLEXPART retroplumes into four discrete transport regimes: westerly flow from the eastern North America (NEUS/SEUS); easterly trade-wind flow from northern Africa and the subtropical NAO (Africa); long, open-ocean, anticyclonic flow around the Bermuda High (Oceanic); and transitional flow from the relatively clean open ocean to the polluted northeastern US (North). Based on all data, annual average concentrations of non-sea-salt (nss) SO42- associated with aerosols and annual VWA concentrations in precipitation decreased significantly (by 22 and 49%, respectively) whereas annual VWA concentrations of NH4+ in precipitation increased significantly (by 70%). Corresponding trends in aerosol and precipitation NO3- and of aerosol NH4+ were insignificant. Nss SO42- in precipitation under NEUS/SEUS and Oceanic flow decreased significantly (61% each) whereas corresponding trends in particulate nss SO42- under both flow regimes were insignificant. Trends for precipitation were driven in part by decreasing emissions of SO2 over upwind continents and associated decreases in anthropogenic contributions to nss SO42- concentrations. Under NEUS/SEUS and Oceanic flow, the ratio of anthropogenic to biogenic contributions to to nss SO42- in the column scavenged by precipitation were relatively greater than those in near surface aerosol, which implies that, for these flow regimes, precipitation is a better indicator of overall anthropogenic impacts on the lower troposphere. Particulate nss SO42- under African flow also decreased significantly (34%) whereas the corresponding decrease in nss SO42- associated with precipitation was marginally insignificant. We infer that these trends were driven in part by reductions in the emissions and transport of oxidized S compounds from Europe. The lack of significant trends in NO3- associated with aerosols and precipitation under NEUS/SEUS flow is notable in light of the large decrease (39%) in NOx emissions in the US over the period of record. Rapid chemical processing of oxidized N in marine air contributed to this lack of correspondence. Decreasing ratios of nss SO42- to NH4+ and the significant decreasing trend in precipitation acidity (37%) indicate that the total amount of acidity in the multiphase gas-aerosol system in the western NAO troposphere decreased over the period of record. Decreasing aerosol acidities would have shifted the phase partitioning of total NH3 (NH3 + particulate NH4+) towards the gas phase thereby decreasing the atmospheric lifetime of total NH3 against wet plus dry deposition. The trend of increasing NH4+ in precipitation at Bermuda over the period of record suggests that NH3 emissions from surrounding continents also increased. Decreasing particulate nss SO42- in near-surface air under NEUS/SEUS flow over the period of record suggests a lower limit for net warming in the range of 0.1–0.3 W m-2 resulting from the decreased shortwave scattering and absorption by nss SO42- and associated aerosol constituents.


PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0222584 ◽  
Author(s):  
Anouck Ody ◽  
Thierry Thibaut ◽  
Léo Berline ◽  
Thomas Changeux ◽  
Jean-Michel André ◽  
...  

2020 ◽  
Author(s):  
Ashwita Chouksey ◽  
Xavier Carton ◽  
Jonathan Gula

&lt;p&gt;In recent years, the oceanographic community has devoted considerable interest to the study of SCVs (Submesoscale Coherent Vortices, i.e. vortices with radii between 2-30 km, below the first internal radius of deformation); indeed, both mesoscale and submesoscale eddies contribute to the transport and mixing of water masses and of tracers (active and passive), affecting the heat transport, the ventilation pathways and thus having an impact on the large scale circulation.&lt;/p&gt;&lt;p&gt;In different areas of the ocean, SCVs have been detected, via satellite or in-situ measurements, at the surface or at depth. From these data, SCVs were found to be of different shapes and sizes depending on their place of origin and on their location. Here, we will concentrate rather on the SCVs at depth.&lt;/p&gt;&lt;p&gt;In this study, we use a high resolution simulation of the North Atlantic ocean with the ROMS-CROCO model. In this simulation, we also identify the SCVs at different depths and densities; we analyse their site and mechanism of generation, their drift, the physical processes conducting to this drift and their interactions with the surrounding flows. We also quantify their physical characteristics (radius, thickness, intensity/vorticity, bias in polarity: cyclones versus anticyclones). We provide averages for these characteristics and standard deviations.&amp;#160;&lt;/p&gt;&lt;p&gt;We compare the model results with the observational data, in particular temperature and salinity profiles from Argo floats and velocity data from currentmeter recordings.&amp;#160;&lt;/p&gt;&lt;p&gt;This study is a first step in the understanding of the formation, occurrences and structure of SCVs in the North Atlantic Ocean, of help to improve their in-situ sampling.&lt;/p&gt;


2016 ◽  
Author(s):  
X. W. Fu ◽  
N. Marusczak ◽  
L. -E. Heimbürger ◽  
B. Sauvage ◽  
F. Gheusi ◽  
...  

Abstract. Continuous measurements of atmospheric gaseous elemental mercury (GEM), particulate bound mercury (PBM) and gaseous oxidized mercury (GOM) at the high-altitude Pic du Midi Observatory (PDM, 2877 m a.s.l) in southern France were made from Nov 2011 to Nov 2012. The mean GEM, PBM and GOM concentrations were 1.86 ng m−3, 14 pg m−3 and 27 pg m−3, respectively and we observed 44 high PBM (up to 98 pg m−3) and 61 high GOM (up to 295 pg m−3) events. The high PBM events occurred mainly in cold seasons (winter and spring) whereas high GOM events were mainly observed in the warm seasons (summer and autumn). In cold seasons the maximum air mass residence times (ARTs) associated with high PBM events were observed in the upper troposphere over North America. The ratios of high PBM ARTs to total ARTs over North America, Europe, the Arctic region and Atlantic Ocean were all elevated in the cold season compared to the warm season, indicating that the middle and upper free troposphere of the Northern Hemisphere may be more enriched in PBM in cold seasons. PBM concentrations and PBM/GOM ratios during the high PBM events were significantly anti-correlated with atmospheric aerosol concentrations, air temperature and solar radiation, suggesting in situ formation of PBM in the middle and upper troposphere. We identified two distinct types of high GOM events with the GOM concentrations positively and negatively correlated with atmospheric ozone concentrations, respectively. High GOM events positively correlated with ozone were mainly related to air masses from the upper troposphere over the Arctic region and middle troposphere over the temperate North Atlantic Ocean, whereas high GOM events anti-correlated with ozone were mainly related to air masses from the lower free troposphere over the subtropical North Atlantic Ocean. The ARTs analysis demonstrates that the lower and middle free troposphere over the North Atlantic Ocean was the largest source region of atmospheric GOM at PDM Observatory. The ratios of high GOM ARTs to total ARTs over the subtropical North Atlantic Ocean in summer were significantly higher than that over the temperate and sub-arctic North Atlantic Ocean as well as that over the North Atlantic Ocean in other seasons, indicating abundant in situ oxidation of GEM to GOM in the lower free troposphere over the subtropical North Atlantic Ocean in summer.


2014 ◽  
Vol 14 (15) ◽  
pp. 8119-8135 ◽  
Author(s):  
W. C. Keene ◽  
J. L. Moody ◽  
J. N. Galloway ◽  
J. M. Prospero ◽  
O. R. Cooper ◽  
...  

Abstract. Since the 1980s, emissions of SO2 and NOx (NO + NO2) from anthropogenic sources in the United States (US), Canada, and Europe have decreased significantly suggesting that the export of oxidized S and N compounds from surrounding continents to the atmosphere overlying the North Atlantic Ocean (NAO) has also decreased. The chemical compositions of aerosols and precipitation sampled daily on Bermuda (32.27° N, 64.87° W) from 1989 to 1997 and from 2006 to 2009 were evaluated to quantify the magnitudes, significance, and implications of associated tends in atmospheric composition. The chemical data were stratified based on FLEXPART (FLEXible PARTicle dispersion model) retroplumes into four discrete transport regimes: westerly flow from eastern North America (NEUS/SEUS); easterly trade-wind flow from northern Africa and the subtropical NAO (Africa); long, open-ocean, anticyclonic flow around the Bermuda High (Oceanic); and transitional flow from the relatively clean open ocean to the polluted eastern North America (North). Based on all data, annual average concentrations of non-sea-salt (nss) SO42– associated with aerosols and annual volume-weighted-average (VWA) concentrations in precipitation decreased significantly (by 22% and 49%, respectively) whereas annual VWA concentrations of NH4+ in precipitation increased significantly (by 70%). Corresponding trends in aerosol and precipitation NO3– and of aerosol NH4+ were insignificant. Nss SO42– in precipitation under NEUS/SEUS and Oceanic flow decreased significantly (61% each) whereas corresponding trends in particulate nss SO42– under both flow regimes were insignificant. Trends in precipitation composition were driven in part by decreasing emissions of SO2 over upwind continents and associated decreases in anthropogenic contributions to nss SO42– concentrations. Under NEUS/SEUS and Oceanic flow, the ratio of anthropogenic to biogenic contributions to nss SO42– in the column scavenged by precipitation were relatively greater than those in near surface aerosol, which implies that, for these flow regimes, precipitation is a better indicator of overall anthropogenic impacts on the lower troposphere. Particulate nss SO42– under African flow also decreased significantly (34%) whereas the corresponding decrease in nss SO42– associated with precipitation was insignificant. We infer that these trends were driven in part by reductions in the emissions and transport of oxidized S compounds from Europe. The lack of significant trends in NO3– associated with aerosols and precipitation under NEUS/SEUS flow is notable in light of the large decrease (37%) in NOx emissions in the US and Canada over the period of record. Rapid chemical processing of oxidized N in marine air contributed to this lack of correspondence. Decreasing ratios of nss SO42– to NH4+ and the significant decreasing trend in precipitation acidity (37%) indicate that the total amount of acidity in the multiphase gas–aerosol system in the western NAO troposphere decreased over the period of record. Decreasing aerosol acidities would have shifted the phase partitioning of total NH3 (NH3 + particulate NH4+ towards the gas phase thereby decreasing the atmospheric lifetime of total NH3 against wet plus dry deposition. The trend of increasing NH4+ in precipitation at Bermuda over the period of record suggests that NH3 emissions from surrounding continents also increased. Decreasing particulate nss SO42– in near-surface air under NEUS/SEUS flow over the period of record implies that the corresponding shortwave scattering and absorption by nss S and associated aerosols constituents also decreased. These changes in radiative transfer suggest a corresponding lower limit for net warming over the period in the range of 0.1–0.3 W m–2.


2016 ◽  
Vol 16 (9) ◽  
pp. 5623-5639 ◽  
Author(s):  
Xuewu Fu ◽  
Nicolas Marusczak ◽  
Lars-Eric Heimbürger ◽  
Bastien Sauvage ◽  
François Gheusi ◽  
...  

Abstract. Continuous measurements of atmospheric gaseous elemental mercury (GEM), particulate bound mercury (PBM) and gaseous oxidized mercury (GOM) at the high-altitude Pic du Midi Observatory (PDM Observatory, 2877 m a.s.l.) in southern France were made from November 2011 to November 2012. The mean GEM, PBM and GOM concentrations were 1.86 ng m−3, 14 pg m−3 and 27 pg m−3, respectively and we observed 44 high PBM (peak PBM values of 33–98 pg m−3) and 61 high GOM (peak GOM values of 91–295 pg m−3) events. The high PBM events occurred mainly in cold seasons (winter and spring) whereas high GOM events were mainly observed in the warm seasons (summer and autumn). In cold seasons the maximum air mass residence times (ARTs) associated with high PBM events were observed in the upper troposphere over North America. The ratios of high PBM ARTs to total ARTs over North America, Europe, the Arctic region and Atlantic Ocean were all elevated in the cold season compared to the warm season, indicating that the middle and upper free troposphere of the Northern Hemisphere may be more enriched in PBM in cold seasons. PBM concentrations and PBM ∕ GOM ratios during the high PBM events were significantly anti-correlated with atmospheric aerosol concentrations, air temperature and solar radiation, suggesting in situ formation of PBM in the middle and upper troposphere. We identified two distinct types of high GOM events with the GOM concentrations positively and negatively correlated with atmospheric ozone concentrations, respectively. High GOM events positively correlated with ozone were mainly related to air masses from the upper troposphere over the Arctic region and middle troposphere over the temperate North Atlantic Ocean, whereas high GOM events anti-correlated with ozone were mainly related to air masses from the lower free troposphere over the subtropical North Atlantic Ocean. The ARTs analysis demonstrates that the lower and middle free troposphere over the North Atlantic Ocean was the largest source region of atmospheric GOM at the PDM Observatory. The ratios of high GOM ARTs to total ARTs over the subtropical North Atlantic Ocean in summer were significantly higher than those over the temperate and sub-arctic North Atlantic Ocean as well as that over the North Atlantic Ocean in other seasons, indicating abundant in situ oxidation of GEM to GOM in the lower free troposphere over the subtropical North Atlantic Ocean in summer.


Sign in / Sign up

Export Citation Format

Share Document