scholarly journals IMPROVED ARCHITECTURE FOR MAXIMIZING SYSTEM LIFETIME OF WIRELESS SENSOR NETWORK USING CLUSTERING ALGORITHM

Author(s):  
KANT KUMAR ADLAK ◽  
MANISH PANDEY

Real time implementation of Ad-hoc Wireless Sensor Network has increased with great potential. Application areas of WSN’s are military warfare, disaster management, battle field, forest fire detection and other several monitoring area. Key challenge in WSN is to minimize the use of limited battery resources. Several energy efficient routing algorithms have been proposed till date. LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering protocol that divides the network into logical clusters and keeps rotating the cluster head selection to send data to sink. In this paper we propose a new technique of cluster formation based on organizational setup structure. New Network structure proposed will show an efficient increase in minimizing the node energy dissipation of signal transmission and will lead to maximize the system lifetime. We also propose a mix of Round-Robin algorithm into the cluster head selection for data transmission to base station. We compare the newly proposed clustering algorithm with the traditional LEACH algorithm.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Asis Kumar Tripathy ◽  
Suchismita Chinara

Wireless sensor network swears an exceptional fine-grained interface between the virtual and physical worlds. The clustering algorithm is a kind of key technique used to reduce energy consumption. Many clustering, power management, and data dissemination protocols have been specifically designed for wireless sensor network (WSN) where energy awareness is an essential design issue. Each clustering algorithm is composed of three phases cluster head (CH) selection, the setup phase, and steady state phase. The hot point in these algorithms is the cluster head selection. The focus, however, has been given to the residual energy-based clustering protocols which might differ depending on the application and network architecture. In this paper, a survey of the state-of-the-art clustering techniques in WSNs has been compared to find the merits and demerits among themselves. It has been assumed that the sensor nodes are randomly distributed and are not mobile, the coordinates of the base station (BS) and the dimensions of the sensor field are known.


Author(s):  
Gaurav Kumar Nigam ◽  
Chetna Dabas

Background & Objective: Wireless sensor networks are made up of huge amount of less powered small sensor nodes that can audit the surroundings, collect meaningful data, and send it base station. Various energy management plans that pursue to lengthen the endurance of overall network has been proposed over the years, but energy conservation remains the major challenge as the sensor nodes have finite battery and low computational capabilities. Cluster based routing is the most fitting system to help for burden adjusting, adaptation to internal failure, and solid correspondence to draw out execution parameters of wireless sensor network. Low energy adaptive clustering hierarchy is an efficient clustering based hierarchical protocol that is used to enhance the lifetime of sensor nodes in wireless sensor network. It has some basic flaws that need to be overwhelmed in order to reduce the energy utilization and inflating the nodes lifetime. Methods : In this paper, an effective auxiliary cluster head selection is used to propose a new enhanced GC-LEACH algorithm in order to minimize the energy utilization and prolonged the lifespan of wireless sensor network. Results & Conclusion: Simulation is performed in NS-2 and the outcomes show that the GC-LEACH outperforms conventional LEACH and its existing versions in the context of frequent cluster head rotation in various rounds, number of data packets collected at base station, as well as reduces the energy consumption 14% - 19% and prolongs the system lifetime 8% - 15%.


2014 ◽  
Vol 626 ◽  
pp. 20-25
Author(s):  
K. Kalaiselvi ◽  
G.R. Suresh

In wireless sensor networks Energy-efficient routing is an important issue due to the limited battery power within the network, Energy consumption is one of the important performance factors. Specifically for the election of cluster head selection and distance between the cluster head node and base station. The main objective of this proposed system is to reduce the energy consumption and prolong the network lifetime. This paper introduces a new clustering algorithm for energy efficient routing based on a cluster head selection


Robust and efficient algorithms for routing and other process for a wireless sensor network are under active development due to technological advancements on wireless transmission systems. Each of the sensor nodes in a wireless sensor network either transmits or forwards the data packets to the base station. The main objective of the majority of the work in the literature is to save the energy consumption efficiently. The cluster based routing mechanism helps to achieve low energy consumption within the network. The network organizes its nodes as a cluster and selects a particular node as cluster head to manage the transmission within and between clusters. The majority of the clustering approach selects the cluster head using a thresholding based approach. Nodes having energy level higher than the threshold are the candidates for the cluster head selection. In the proposed approach the nodes remaining energy and the sum of distance between individual nodes to the cluster head node is considered. Optimal cluster head selection will help to increase the overall life time of the network. The distance between the sensor nodes is estimated using RSSI (Received Signal Strength Indicator) and other parameters measured from the physical layer. Experiments are conducted with simulation environment created with the NS-2 simulator and efficiency of the approach is analyzed in detail.


Author(s):  
Asha Rawat, Dr. Mukesh Kalla

Wireless networks data aggregation allows in-network processing, reduces packet transmission and data redundancy, and thus helps extend wireless sensor systems to the full duration of their lives. There have been many ways of dividing the network into clusters, collecting information from nodes and adding it to the base station, to extend wireless sensor network life. Certain cluster algorithms consider the residual energy of the nodes when selecting clusterheads and others regularly rotate the selection head of the cluster. However, we seldom investigate the network density or local distance. In this report we present an energy-efficient clustering algorithm that selects the best cluster heads of the system after dividing the network into clusters. The cluster head selection depends on the distance between the base station nodes and the remaining power of this approach.Each node's residual energy is compared to the node count. Our results show that the solution proposed more efficiently extends the life of the wireless sensor network. The algorithm prolongs the life and effectiveness of the Wireless Sensor Network.


Author(s):  
D. CHARANYA ◽  
G. V. UMA

A Wireless Sensor Network is a collection of sensor nodes distributed into a network to monitor the environmental conditions and send the sensed data to the Base Station. Wireless Sensor Network is one of the rapidly developing area in which energy consumption is the most important aspect to be considered while tracking, monitoring, reporting and visualization of data. An Energy Efficient Prediction-based Clustering algorithm is proposed to track the moving object in wireless sensor network. This algorithm reduces the number of hops between transmitter and receiver nodes and also the number of transmitted packets. In this method, the sensor nodes are statically placed and clustered using LEACH-R algorithm. The Prediction based clustering algorithm is applied where few nodes are selected for tracking which uses the prediction mechanism to predict the next location of the moving object. The Current Location of the target is found using Trilateration algorithm. The Current Location or Predicted Location is sent to active Cluster Head from the leader node or the other node. Based on which node send the message to the Cluster Head, the Predicted or Current Location will be sent to the base station. In real time, the proposed work is applicable in traffic tracking and vehicle tracking. The experiment is carried out using Network Stimulator-2 environment. Simulation result shows that the proposed algorithm gives a better performance and reduces the energy consumption.


Sign in / Sign up

Export Citation Format

Share Document