scholarly journals Energy Efficient Receiver Signal Strength Indicator Based Clustered Routing Algorithm for Wireless Sensor Network

Robust and efficient algorithms for routing and other process for a wireless sensor network are under active development due to technological advancements on wireless transmission systems. Each of the sensor nodes in a wireless sensor network either transmits or forwards the data packets to the base station. The main objective of the majority of the work in the literature is to save the energy consumption efficiently. The cluster based routing mechanism helps to achieve low energy consumption within the network. The network organizes its nodes as a cluster and selects a particular node as cluster head to manage the transmission within and between clusters. The majority of the clustering approach selects the cluster head using a thresholding based approach. Nodes having energy level higher than the threshold are the candidates for the cluster head selection. In the proposed approach the nodes remaining energy and the sum of distance between individual nodes to the cluster head node is considered. Optimal cluster head selection will help to increase the overall life time of the network. The distance between the sensor nodes is estimated using RSSI (Received Signal Strength Indicator) and other parameters measured from the physical layer. Experiments are conducted with simulation environment created with the NS-2 simulator and efficiency of the approach is analyzed in detail.

Author(s):  
Gaurav Kumar Nigam ◽  
Chetna Dabas

Background & Objective: Wireless sensor networks are made up of huge amount of less powered small sensor nodes that can audit the surroundings, collect meaningful data, and send it base station. Various energy management plans that pursue to lengthen the endurance of overall network has been proposed over the years, but energy conservation remains the major challenge as the sensor nodes have finite battery and low computational capabilities. Cluster based routing is the most fitting system to help for burden adjusting, adaptation to internal failure, and solid correspondence to draw out execution parameters of wireless sensor network. Low energy adaptive clustering hierarchy is an efficient clustering based hierarchical protocol that is used to enhance the lifetime of sensor nodes in wireless sensor network. It has some basic flaws that need to be overwhelmed in order to reduce the energy utilization and inflating the nodes lifetime. Methods : In this paper, an effective auxiliary cluster head selection is used to propose a new enhanced GC-LEACH algorithm in order to minimize the energy utilization and prolonged the lifespan of wireless sensor network. Results & Conclusion: Simulation is performed in NS-2 and the outcomes show that the GC-LEACH outperforms conventional LEACH and its existing versions in the context of frequent cluster head rotation in various rounds, number of data packets collected at base station, as well as reduces the energy consumption 14% - 19% and prolongs the system lifetime 8% - 15%.


Wireless sensor network environment based on limited resources technology. Energy is one of the most significant resources in such systems, so ideal utilization of energy is essential. A high energy efficient with trustable routingprotocol for Wireless_Sensor_Networks covered under this_paper. The protocol is trustworthy as far as data conveyance at the Base_Station. We assumed about portability in sensor nodes and in the base station. The proposed protocol depends on the cluster and hierarchical routing protocols. All clusters comprises of unique cluster-head-node and two-deputy-clusterhead-nodes, and several normal sensor-nodes. The cluster-head panel model introduced to optimize the re-clustering time and energy prerequisites. As consider the protocol trustworthiness, it lays finest exertion to guarantee a predetermined level of performance at the base-station. Contingent upon the network topology, transmit data from cluster head node to base station that done either by direct or indirect i.e. multi-hop way. Also, substitute ways are utilized for data transmission between a cluster head node and the base station. Thorough NS2 simulation-results delineate energy-efficiency, throughput, and delayed-lifetime of sensor-nodes affected by the proposedprotocol.


2018 ◽  
Vol 7 (2.27) ◽  
pp. 138
Author(s):  
Kamini Joshi ◽  
Sandeep Singh Kang

The wireless sensor network is the decentralized type of network which can sense information and pass it to base station. The energy consumption is the major issue of WSN due to small of sensor nodes and far deployment of the network. The clustering is the efficient approach to increase lifetime of the sensor network. In the approach of clustering cluster head are selected for the data aggregation. The fuzzy logic rules are derived based on node energy, distance to base station for the cluster head selection, which increase lifetime of sensor nodes in the existing system. In this research work, cache nodes are deployed in the network which reduce energy consumption of WSN. In the proposed approach cluster head send data to cache nodes and it will forward data to base station. The simulation is performed in MATLAB and proposed technique performs well in terms of number of packets transmitted, number of dead nodes, network lifetime, throughput and remaining energy.  


Author(s):  
D. CHARANYA ◽  
G. V. UMA

A Wireless Sensor Network is a collection of sensor nodes distributed into a network to monitor the environmental conditions and send the sensed data to the Base Station. Wireless Sensor Network is one of the rapidly developing area in which energy consumption is the most important aspect to be considered while tracking, monitoring, reporting and visualization of data. An Energy Efficient Prediction-based Clustering algorithm is proposed to track the moving object in wireless sensor network. This algorithm reduces the number of hops between transmitter and receiver nodes and also the number of transmitted packets. In this method, the sensor nodes are statically placed and clustered using LEACH-R algorithm. The Prediction based clustering algorithm is applied where few nodes are selected for tracking which uses the prediction mechanism to predict the next location of the moving object. The Current Location of the target is found using Trilateration algorithm. The Current Location or Predicted Location is sent to active Cluster Head from the leader node or the other node. Based on which node send the message to the Cluster Head, the Predicted or Current Location will be sent to the base station. In real time, the proposed work is applicable in traffic tracking and vehicle tracking. The experiment is carried out using Network Stimulator-2 environment. Simulation result shows that the proposed algorithm gives a better performance and reduces the energy consumption.


2020 ◽  
Author(s):  
Hamid Reza Farahzadi ◽  
Mostafa Langarizadeh ◽  
Mohammad Mirhosseini ◽  
Seyed Ali Fatemi Aghda

AbstractWireless sensor network has special features and many applications, which have attracted attention of many scientists. High energy consumption of these networks, as a drawback, can be reduced by a hierarchical routing algorithm. The proposed algorithm is based on the Low Energy Adaptive Clustering Hierarchy (LEACH) and Quadrant Cluster based LEACH (Q-LEACH) protocols. To reduce energy consumption and provide a more appropriate coverage, the network was divided into several regions and clusters were formed within each region. In selecting the cluster head (CH) in each round, the amount of residual energy and the distance from the center of each node were calculated by the base station (including the location and residual energy of each node) for all living nodes in each region. In this regard, the node with the largest value had the highest priority to be selected as the CH in each network region. The base station calculates the CH due to the lack of energy constraints and is also responsible for informing it throughout the network, which reduces the load consumption and tasks of nodes in the network. The information transfer steps in this protocol are similar to the LEACH protocol stages. To better evaluate the results, the proposed method was implemented with LEACH LEACH-SWDN, and Q-LEACH protocols using MATLAB software. The results showed better performance of the proposed method in network lifetime, first node death time, and the last node death time.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Zuo Chen ◽  
Min He ◽  
Wei Liang ◽  
Kai Chen

Wireless sensor network (WSN) is a kind of distributed and self-organizing networks, in which the sensor nodes have limited communication bandwidth, memory, and limited energy. The topology construction of this network is usually vulnerable when attacked by malicious nodes. Besides, excessive energy consumption is a problem that can not be ignored. Therefore, this paper proposes a secure topology protocol of WSN which is trust-aware and of low energy consumption, called TLES. The TLES considers the trust value as an important factor affecting the behavior of node. In detail, the TLES would take trust value, residual energy of the nodes, and node density into consideration when selecting cluster head nodes. Then, TLES constructs these cluster head nodes by choosing the next hop node according to distance to base station (BS), nodes’ degrees, and residual energy, so as to establish a safe, reliable, and energy saving network. Experimental results show that the algorithm can effectively isolate the malicious node in the network and reduce the consumption of energy of the whole network.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Asis Kumar Tripathy ◽  
Suchismita Chinara

Wireless sensor network swears an exceptional fine-grained interface between the virtual and physical worlds. The clustering algorithm is a kind of key technique used to reduce energy consumption. Many clustering, power management, and data dissemination protocols have been specifically designed for wireless sensor network (WSN) where energy awareness is an essential design issue. Each clustering algorithm is composed of three phases cluster head (CH) selection, the setup phase, and steady state phase. The hot point in these algorithms is the cluster head selection. The focus, however, has been given to the residual energy-based clustering protocols which might differ depending on the application and network architecture. In this paper, a survey of the state-of-the-art clustering techniques in WSNs has been compared to find the merits and demerits among themselves. It has been assumed that the sensor nodes are randomly distributed and are not mobile, the coordinates of the base station (BS) and the dimensions of the sensor field are known.


21st century is considered as the era of communication, and Wireless Sensor Networks (WSN) have assumed an extremely essential job in the correspondence period. A wireless sensor network is defined as a homogeneous or heterogeneous system contains a large number of sensors, namely called nodes used to monitor different environments in cooperatives. WSN is composed of sensor nodes (S.N.), base stations (B.S.), and cluster head (C.H.). The popularity of wireless sensor networks has been increased day by day exponentially because of its wide scope of utilizations. The applications of wireless sensor networks are air traffic control, healthcare systems, home services, military services, industrial & building automation, network communications, VAN, etc. Thus the wide range of applications attracts attackers. To secure from different types of attacks, mainly intruder, intrusion detection based on dynamic state context and hierarchical trust in WSNs (IDSHT) is proposed. The trust evaluation is carried out in hierarchical way. The trust of sensor nodes is evaluated by cluster head (C.H.), whereas the trust of the cluster head is evaluated by a neighbor cluster head or base station. Hence the content trust, honest trust, and interactive trust are put forward by combining direct evaluation and feedback based evaluation in the fixed hop range. In this way, the complexity of trust management is carried in a hierarchical manner, and trust evaluation overhead is minimized.


Author(s):  
Ashim Pokharel ◽  
Ethiopia Nigussie

Due to limited energy resources, different design strategies have been proposed in order to achieve better energy efficiency in wireless sensor networks, and organizing sensor nodes into clusters and data aggregation are among such solutions. In this work, secure communication protocol is added to clustered wireless sensor network. Security is a very important requirement that keeps the overall system usable and reliable by protecting the information in the network from attackers. The proposed and implemented AES block cipher provides confidentiality to the communication between nodes and base station. The energy efficiency of LEACH clustered network and with added security is analyzed in detail. In LEACH clustering along with the implemented data aggregation technique 48% energy has been saved compared to not clustered and no aggregation network. The energy consumption overhead of the AES-based security is 9.14%. The implementation is done in Contiki and the simulation is carried out in Cooja emulator using sky motes.


Author(s):  
Ekaterina Andreevna Evstifeeva ◽  
Valeriy Dmitrievich Semeykin

Clustering, as one of the energy-efficient approaches, is widely used in wireless sensor networks. This method is based on creating clusters and selecting cluster head nodes in a wireless sensor network. Clustering saves network energy because data transfer is restricted between multiple nodes. Thus, clustering is provided between several nodes, and the service life of the wireless sensor network can be extended. Since the parent cluster node interacts with other nodes of the network, a node with a high level of residual energy must be selected to perform this role. When the energy level of the selected cluster head node becomes lower than the threshold value, then the re-election of this node takes place. It should be noted that multiple patterns of choosing cluster head nodes built using various parameters (residual node energy, distance from the base station to a node, distance between the head node and a cluster member, the number and proximity of neighboring nodes, etc.) lacked for a factor of energy consumption, i.e. how many times nodes communicated to each other. To cope with the problem, this paper presents a prognostic algorithm for selecting a cluster head node using fuzzy logic. This algorithm suggests using a number of input parameters, such as the residual energy of the node, the proximity of neighboring nodes, and the centralization of the node in the cluster. The proposed algorithm has been implemented using the software package MATLAB Fuzzy Logic Toolbox. The simulation results prove the advantages of the proposed technique; application of the input parameters mentioned above helps select optimal cluster head nodes in a wireless sensor network, which increases power efficiency of a wireless sensor network.


Sign in / Sign up

Export Citation Format

Share Document