scholarly journals A locally one-dimensional scheme for a general parabolic equation describing microphysical processes in convective clouds

Author(s):  
B.A. Ashabokov ◽  
◽  
A.Kh. Khibiev ◽  
M.Kh. Shkhanukov-Lafishev ◽  
◽  
...  

A locally one-dimensional difference scheme for a general parabolic equation in a p-dimensional parallelepiped is considered. To describe microphysical processes in convective clouds, non-local (nonlinear) integral sources of a special type are included in the equation under consideration. An a priori estimate for the solution of a locally one-dimensional scheme is obtained and its convergence is proved.

2000 ◽  
Vol 10 (03) ◽  
pp. 361-377 ◽  
Author(s):  
ALEXANDER A. SAMARSKII ◽  
VICTOR I. KORZYUK ◽  
SERGEY V. LEMESHEVSKY ◽  
PETR P. MATUS

A problem of conjugation of hyperbolic and parabolic equations in domain with moving boundaries is considered. Existence and uniqueness of a strong solution of the given problem are proved. A priori estimate for operator-difference scheme with non-self-adjoint spatial operator is obtain. Homogeneous difference scheme with constant weights for the conjugation problem is constructed. Moreover, consistency conditions are approximated with the second-order of accuracy with respect to spatial variables. Stability and convergence of the suggested scheme are investigated.


2002 ◽  
Vol 15 (3) ◽  
pp. 277-286 ◽  
Author(s):  
Said Mesloub ◽  
Abdelfatah Bouziani

In this paper, we prove the existence, uniqueness and continuous dependence on the data of a solution of a mixed problem with a weighted integral condition for a parabolic equation with the Bessel operator. The proof uses a functional analysis method based on an a priori estimate and on the density of the range of the operator generated by the considered problem.


1996 ◽  
Vol 19 (4) ◽  
pp. 751-758 ◽  
Author(s):  
Jorge Ferreira

In this paper we prove the existence and uniqueness of weak solutions of the mixed problem for the nonlinear hyperbolic-parabolic equation(K1(x,t)u′)′+K2(x,t)u′+A(t)u+F(u)=fwith null Dirichlet boundary conditions and zero initial data, whereF(s)is a continuous function such thatsF(s)≥0,∀s∈Rand{A(t);t≥0}is a family of operators ofL(H01(Ω);H−1(Ω)). For the existence we apply the Faedo-Galerkin method with an unusual a priori estimate and a result of W. A. Strauss. Uniqueness is proved only for some particular classes of functionsF.


2014 ◽  
Vol 6 (3) ◽  
pp. 281-298 ◽  
Author(s):  
Hai-Yan Cao ◽  
Zhi-Zhong Sun ◽  
Xuan Zhao

AbstractThis article deals with the numerical solution to the magneto-thermo-elasticity model, which is a system of the third order partial differential equations. By introducing a new function, the model is transformed into a system of the second order generalized hyperbolic equations. A priori estimate with the conservation for the problem is established. Then a three-level finite difference scheme is derived. The unique solvability, unconditional stability and second-order convergence inL∞-norm of the difference scheme are proved. One numerical example is presented to demonstrate the accuracy and efficiency of the proposed method.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Bouziani Abdelfatah ◽  
Oussaeif Taki-Eddine ◽  
Ben Aoua Leila

We study a mixed problem with an integral two-space-variables condition for parabolic equation with the Bessel operator. The existence and uniqueness of the solution in functional weighted Sobolev space are proved. The proof is based on a priori estimate “energy inequality” and the density of the range of the operator generated by the problem considered.


Author(s):  
Л.М. Энеева

В работе исследуется обыкновенное дифференциальное уравнение дробного порядка, содержащее композицию дробных производных с различными началами, с переменным потенциалом. Рассматриваемое уравнение выступает модельным уравнением движения во фрактальной среде. Для исследуемого уравнения доказана априорная оценка решения смешанной двухточечной краевой задачи. We consider an ordinary differential equation of fractional order with the composition of leftand right-sided fractional derivatives, and with variable potential. The considered equation is a model equation of motion in fractal media. We prove an a priori estimate for solutions of a mixed two-point boundary value problem for the equation under study.


Sign in / Sign up

Export Citation Format

Share Document