Application of Foam Drainage and Gas Extraction in Gas Field Development

2021 ◽  
2021 ◽  
Author(s):  
Vinicius Gasparetto ◽  
Thierry Hernalsteens ◽  
Joao Francisco Fleck Heck Britto ◽  
Joab Flavio Araujo Leao ◽  
Thiago Duarte Fonseca Dos Santos ◽  
...  

Abstract Buzios is a super-giant ultra-deep-water pre-salt oil and gas field located in the Santos Basin off Brazil's Southeastern coast. There are four production systems already installed in the field. Designed to use flexible pipes to tie back the production and injection wells to the FPSOs (Floating Production Storage and Offloading), these systems have taken advantage from several lessons learned in the previous projects installed by Petrobras in Santos Basin pre-salt areas since 2010. This knowledge, combined with advances in flexible pipe technology, use of long-term contracts and early engagement with suppliers, made it possible to optimize the field development, minimizing the risks and reducing the capital expenditure (CAPEX) initially planned. This paper presents the first four Buzios subsea system developments, highlighting some of the technological achievements applied in the field, as the first wide application of 8" Internal Diameter (ID) flexible production pipes for ultra-deep water, leading to faster ramp-ups and higher production flowrates. It describes how the supply chain strategy provided flexibility to cover the remaining project uncertainties, and reports the optimizations carried out in flexible riser systems and subsea layouts. The flexible risers, usually installed in lazy wave configurations at such water depths, were optimized reducing the total buoyancy necessary. For water injection and service lines, the buoyancy modules were completely removed, and thus the lines were installed in a free-hanging configuration. Riser configuration optimizations promoted a drop of around 25% on total riser CAPEX and allowed the riser anchor position to be placed closer to the floating production unit, promoting opportunities for reducing the subsea tieback lengths. Standardization of pipe specifications and the riser configurations allowed the projects to exchange the lines, increasing flexibility and avoiding riser interference in a scenario with multiple suppliers. Furthermore, Buzios was the first ultra-deep-water project to install a flexible line, riser, and flowline, with fully Controlled Annulus Solution (CAS). This system, developed by TechnipFMC, allows pipe integrity management from the topside, which reduces subsea inspections. As an outcome of the technological improvements and the optimizations applied to the Buzios subsea system, a vast reduction in subsea CAPEX it was achieved, with a swift production ramp-up.


2021 ◽  
Vol 3 (8) ◽  
pp. 70-72
Author(s):  
Jianbo Hu ◽  
◽  
Yifeng Di ◽  
Qisheng Tang ◽  
Ren Wen ◽  
...  

In recent years, China has made certain achievements in shallow sea petroleum geological exploration and development, but the exploration of deep water areas is still in the initial stage, and the water depth in the South China Sea is generally 500 to 2000 meters, which is a deep water operation area. Although China has made some progress in the field of deep-water development of petroleum technology research, but compared with the international advanced countries in marine science and technology, there is a large gap, in the international competition is at a disadvantage, marine research technology and equipment is relatively backward, deep-sea resources exploration and development capacity is insufficient, high-end technology to foreign dependence. In order to better develop China's deep-sea oil and gas resources, it is necessary to strengthen the development of drilling and completion technology in the oil industry drilling engineering. This paper briefly describes the research overview, technical difficulties, design principles and main contents of the completion technology in deepwater drilling and completion engineering. It is expected to have some significance for the development of deepwater oil and gas fields in China.


2018 ◽  
Author(s):  
Humoud Almohammad ◽  
Abdullah Al-Derbass ◽  
Abdulaziz Alsubaie ◽  
Mohammed Bumajdad ◽  
Abdulaziz Al-Khamis ◽  
...  

2016 ◽  
Author(s):  
M. Zamberi ◽  
M. Mohd Sallehud-Din ◽  
S. Shaffee ◽  
N. Nik Kamaruddin ◽  
M. B. Jadid ◽  
...  

2003 ◽  
Vol 20 (1) ◽  
pp. 691-698
Author(s):  
M. J. Sarginson

AbstractThe Clipper Gas Field is a moderate-sized faulted anticlinal trap located in Blocks 48/19a, 48/19c and 48/20a within the Sole Pit area of the southern North Sea Gas Basin. The reservoir is formed by the Lower Permian Leman Sandstone Formation, lying between truncated Westphalian Coal Measures and the Upper Permian evaporitic Zechstein Group which form source and seal respectively. Reservoir permeability is very low, mainly as a result of compaction and diagenesis which accompanied deep burial of the Sole Pit Trough, a sub basin within the main gas basin. The Leman Sandstone Formation is on average about 715 ft thick, laterally heterogeneous and zoned vertically with the best reservoir properties located in the middle of the formation. Porosity is fair with a field average of 11.1%. Matrix permeability, however, is less than one millidarcy on average. Well productivity depends on intersecting open natural fractures or permeable streaks within aeolian dune slipface sandstones. Field development started in 1988. 24 development wells have been drilled to date. Expected recoverable reserves are 753 BCF.


2016 ◽  
Vol 56 (1) ◽  
pp. 29 ◽  
Author(s):  
Neil Tupper ◽  
Eric Matthews ◽  
Gareth Cooper ◽  
Andy Furniss ◽  
Tim Hicks ◽  
...  

The Waitsia Field represents a new commercial play for the onshore north Perth Basin with potential to deliver substantial reserves and production to the domestic gas market. The discovery was made in 2014 by deepening of the Senecio–3 appraisal well to evaluate secondary reservoir targets. The well successfully delineated the extent of the primary target in the Upper Permian Dongara and Wagina sandstones of the Senecio gas field but also encountered a combination of good-quality and tight gas pay in the underlying Lower Permian Kingia and High Cliff sandstones. The drilling of the Waitsia–1 and Waitsia–2 wells in 2015, and testing of Senecio-3 and Waitsia-1, confirmed the discovery of a large gas field with excellent flow characteristics. Wireline log and pressure data define a gross gas column in excess of 350 m trapped within a low-side fault closure that extends across 50 km2. The occurrence of good-quality reservoir in the depth interval 3,000–3,800 m is diagenetically controlled with clay rims inhibiting quartz cementation and preserving excellent primary porosity. Development planning for Waitsia has commenced with the likelihood of an early production start-up utilising existing wells and gas processing facilities before ramp-up to full-field development. The dry gas will require minimal processing, and access to market is facilitated by the Dampier–Bunbury and Parmelia gas pipelines that pass directly above the field. The Waitsia Field is believed to be the largest conventional Australian onshore discovery for more than 30 years and provides impetus and incentive for continued exploration in mature and frontier basins. The presence of good-quality reservoir and effective fault seal was unexpected and emphasise the need to consider multiple geological scenarios and to test unorthodox ideas with the drill bit.


Resources ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 47 ◽  
Author(s):  
Alexey Cherepovitsyn ◽  
Dmitry Metkin ◽  
Alexander Gladilin

Currently, under the conditions of increasing depletion of hydrocarbon reserves in Russia, it is necessary to consider the resource potential of poorly-researched oil and gas objects as a factor for ensuring the sustainable development of the oil and gas complex, in the context of the concept formation of rational subsoil utilization and a circular economy. The methodology of this study is based on a clear sequence of geological and economic studies of poorly-researched oil and gas objects, including four stages, such as analysis of the raw material base, assessment of the raw material potential, determination of technological development parameters, and economic evaluation. The methods of the probabilistic estimation of oil resources of the forecasted objects with regard to geological risk are outlined. Software packages “EVA—Risk Analysis” and “EVA—Economic Evaluation of Oil and Gas Field Development Projects” were used for estimation. The result of the study is the determination of the geological and economic efficiency of the development of nine hydrocarbon objects with the determination of the order of their further geological exploration, and introduction into industrial development on the example of the poorly-researched region of the Timan-Pechora oil and gas province located in the Arctic zone.


Sign in / Sign up

Export Citation Format

Share Document