Reference Model-based Fault Detection and Isolation for Discrete-time Systems Subject to Persistent Disturbances

2020 ◽  
Author(s):  
Silvane Schons ◽  
Daniel Coutinho ◽  
Michel Kinnaert

This paper deals with the design of a robust lter aimed for fault detection and isolation applied to discrete-time systems subject to arbitrary (not necessarily vanishing) normbounded (i.e., `1) input disturbances. The idea is to approximate the behavior from faults to residual given by a reference model despite the presence of disturbances. The lter design iscast as an optimization problem subject to linear matrix inequality constraints. A numerical example is presented to demonstrate the potential of the proposed approach.

2008 ◽  
Vol 2008 ◽  
pp. 1-16 ◽  
Author(s):  
Nike Liu ◽  
Kemin Zhou

This paper considers robust fault-detection problems for linear discrete time systems. It is shown that the optimal robust detection filters for several well-recognized robust fault-detection problems, such asℋ−/ℋ∞,ℋ2/ℋ∞, andℋ∞/ℋ∞problems, are the same and can be obtained by solving a standard algebraic Riccati equation. Optimal filters are also derived for many other optimization criteria and it is shown that some well-studied and seeming-sensible optimization criteria for fault-detection filter design could lead to (optimal) but useless fault-detection filters.


2004 ◽  
Vol 2004 (1) ◽  
pp. 33-48 ◽  
Author(s):  
Magdi S. Mahmoud ◽  
Peng Shi

This paper develops a result on the design of robust steady-state estimator for a class of uncertain discrete-time systems with Markovian jump parameters. This result extends the steady-state Kalman filter to the case of norm-bounded time-varying uncertainties in the state and measurement equations as well as jumping parameters. We derive a linear state estimator such that the estimation-error covariance is guaranteed to lie within a certain bound for all admissible uncertainties. The solution is given in terms of a family of linear matrix inequalities (LMIs). A numerical example is included to illustrate the theory.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Fucheng Liao ◽  
Yingxue Wu ◽  
Xiao Yu ◽  
Jiamei Deng

A finite-time bounded tracking control problem for a class of linear discrete-time systems subject to disturbances is investigated. Firstly, by applying a difference method to constructing the error system, the problem is transformed into a finite-time boundedness problem of the output vector of the error system. In fact, this is a finite-time boundedness problem with respect to the partial variables. Secondly, based on the partial stability theory and the research methods of finite-time boundedness problem, a state feedback controller formulated in form of linear matrix inequality is proposed. Based on this, a finite-time bounded tracking controller of the original system is obtained. Finally, a numerical example is presented to illustrate the effectiveness of the controller.


Sign in / Sign up

Export Citation Format

Share Document