Ensemble Grey and Black-box Nonlinear System Identification of a Positioning System

2020 ◽  
Author(s):  
Walisson Chaves Ferreira Pinto ◽  
Helon Vicente Hultmann Ayala

In this work, grey and black-box approaches are used in order to model a electromechanical positioning system (EMPS). An ensemble model is then constructed by combining these two approaches, by using the predictions of both models in order to generate an improved estimated output. Four friction models, in their symmetric and asymmetric versions,namely (i) Coulomb model with finite slope at zero velocity and viscous friction, (ii) Coulomb model with viscous friction, (iii) Tustin friction model, (iv) Coulomb model with viscous friction and Stribeck effect were used to describe the dynamic behavior of the EMPS. The results have shown that the combination of grey and black-box models was able to perform better than the grey-box model and that the proposed friction models are also able to improve the relativeerror. This encourages further research on the application of the concept of ensemble model construction from machine learning to the nonlinear system identication context towards more accurate model construction.

Author(s):  
Yun-Hsiang Sun ◽  
Tao Chen ◽  
Christine Qiong Wu ◽  
Cyrus Shafai

In this paper, we provide not only key knowledge for friction model selection among candidate models but also experimental friction features compared with numerical predictions reproduced by the candidate models. A motor-driven one-dimensional sliding block has been designed and fabricated in our lab to carry out a wide range of control tasks for the friction feature demonstrations and the parameter identifications of the candidate models. Besides the well-known static features such as break-away force and viscous friction, our setup experimentally demonstrates subtle dynamic features that characterize the physical behavior. The candidate models coupled with correct parameters experimentally obtained from our setup are taken to simulate the features of interest. The first part of this work briefly introduces the candidate friction models, the friction features of interest, and our experimental approach. The second part of this work is dedicated to the comparisons between the experimental features and the numerical model predictions. The discrepancies between the experimental features and the numerical model predictions help researchers to judge the accuracy of the models. The relation between the candidate model structures and their numerical friction feature predictions is investigated and discussed. A table that summarizes how to select the most optimal friction model among a variety of engineering applications is presented at the end of this paper. Such comprehensive comparisons have not been reported in previous literature.


Author(s):  
Albert Peiret ◽  
Farnood Gholami ◽  
József Kövecses ◽  
Josep M. Font-Llagunes

Simulation of large-scale multibody systems with unilateral contacts requires formulations with which good computational performance can be achieved. The availability of many solver algorithms for Linear Complementarity Problems (LCP) makes the LCP-based formulations a good candidate for this. However, considering friction in contacts asks for new friction models compatible with this kind of formulations. Here, a new, regularized friction model is presented to approximate the Coulomb model, which allows to formulate the multibody system dynamics as a LCP with bounds. Moreover, a bristle approach is used to approximate the stiction force, so that it improves the numerical behaviour of the system and makes it able to handle redundancy coming from the friction interfaces. Several examples using a 3D wheel model has been carried out, and the proposed friction model shows a better approximation of the Coulomb model compared to other LCP-based formulations.


2021 ◽  
Vol 7 (1) ◽  
pp. 1-11
Author(s):  
Zewang Yuan ◽  
Mengling Wu ◽  
Chun Tian ◽  
Jiajun Zhou ◽  
Chao Chen

AbstractFriction is the bond linking the tangential and normal forces at the wheel-rail interface. Modeling friction is the precondition for the wheel-rail adhesion calculation. In this work, the critical role of friction in the calculation of wheel-rail adhesion is discussed. Four types of friction models (Coulomb model, linear model + Coulomb model, rational model and exponential model) which are commonly used for the calculation of wheel-rail adhesion are reviewed, in particular with regard to their structural characteristics and application state. The adhesion coefficients calculated from these four friction models using the Polach model are analyzed by comparison with the measured values. The rational model and the exponential model are more flexible for defining the falling friction, and the adhesion coefficient calculated by these two models is highly consistent with the measured one. Though the rational model and exponential model describe the falling friction well, the existing friction models are not applicable for calculating adhesion after considering more realistic factors, such as thermal effect, contaminants and so on. Developing a novel and practical friction model to accurately describe the wheel-rail friction behavior is still an essential but challenging and significant task. This review provides a reference for the selection of existing friction models and generates fresh insights into developing novel and practical friction models.


2021 ◽  
Author(s):  
Qingna Zeng ◽  
Donghui Wang ◽  
Fenggang Zang ◽  
Yixiong Zhang

Abstract In this paper, transmission characteristic of periodic composite pipeline is investigated for axial vibration, focusing on friction coupling effect. A novel transfer matrix method is developed to calculate band gap structures (BGs) with the consideration of different forms of viscous friction. Frequency response function for finite periods is obtained and shows good consistency with BGs for infinite periods. The energy dissipation caused by viscous friction exists in the entire frequency range, as friction coupling is always distributed along the pipe element. Meanwhile, the attenuation intensity is relatively small compared with that induced by Bragg scattering mechanism. Therefore, viscous friction is not affecting the overall trend of BGs, only exhibiting certain attenuation in pass band frequency range. The effect of kinematic viscous coefficients on axial BGs are systematically examined in different friction models. Attenuation intensity goes up with increasing kinematic viscous coefficients, in addition, energy dissipation caused by frequency dependent friction model is generally higher than that of steady state friction condition. Moreover, frictional dissipation shows more sensitivity to high frequency. The research in this paper enriches fluid structure interaction theory of pipe element, which is also expected to be helpful in controlling the dynamical behaviors of pipeline system conveying fluid.


2015 ◽  
Vol 166 ◽  
pp. 96-108 ◽  
Author(s):  
Hector M. Romero Ugalde ◽  
Jean-Claude Carmona ◽  
Juan Reyes-Reyes ◽  
Victor M. Alvarado ◽  
Juan Mantilla

Author(s):  
Albert Peiret ◽  
József Kövecses ◽  
Josep M. Font-Llagunes

The dynamics of multibody systems with many contacts are frequently formulated as a Linear Complementarity Problem (LCP), for which several direct or iterative algorithms are available to solve it efficiently. These formulations rely on discretized friction models that approximate the friction cone of the Coulomb model to a pyramid. However, they produce rank-deficient LCPs even though the physical problem does not have constraint redundancy and has a unique solution. Here, a new discretized friction model is presented which results in an LCP formulation with a full-rank lead matrix. This model relies on an inertial term to couple the equations of the model, which behaves as close to the Coulomb model as the other discretized models. Moreover, it is shown through some simulations that some algorithms can be used with this formulation, which could not be used with the other rank-deficient LCP formulations.


Sign in / Sign up

Export Citation Format

Share Document