scholarly journals A Review on the Application of Friction Models in Wheel-Rail Adhesion Calculation

2021 ◽  
Vol 7 (1) ◽  
pp. 1-11
Author(s):  
Zewang Yuan ◽  
Mengling Wu ◽  
Chun Tian ◽  
Jiajun Zhou ◽  
Chao Chen

AbstractFriction is the bond linking the tangential and normal forces at the wheel-rail interface. Modeling friction is the precondition for the wheel-rail adhesion calculation. In this work, the critical role of friction in the calculation of wheel-rail adhesion is discussed. Four types of friction models (Coulomb model, linear model + Coulomb model, rational model and exponential model) which are commonly used for the calculation of wheel-rail adhesion are reviewed, in particular with regard to their structural characteristics and application state. The adhesion coefficients calculated from these four friction models using the Polach model are analyzed by comparison with the measured values. The rational model and the exponential model are more flexible for defining the falling friction, and the adhesion coefficient calculated by these two models is highly consistent with the measured one. Though the rational model and exponential model describe the falling friction well, the existing friction models are not applicable for calculating adhesion after considering more realistic factors, such as thermal effect, contaminants and so on. Developing a novel and practical friction model to accurately describe the wheel-rail friction behavior is still an essential but challenging and significant task. This review provides a reference for the selection of existing friction models and generates fresh insights into developing novel and practical friction models.

2020 ◽  
Author(s):  
Walisson Chaves Ferreira Pinto ◽  
Helon Vicente Hultmann Ayala

In this work, grey and black-box approaches are used in order to model a electromechanical positioning system (EMPS). An ensemble model is then constructed by combining these two approaches, by using the predictions of both models in order to generate an improved estimated output. Four friction models, in their symmetric and asymmetric versions,namely (i) Coulomb model with finite slope at zero velocity and viscous friction, (ii) Coulomb model with viscous friction, (iii) Tustin friction model, (iv) Coulomb model with viscous friction and Stribeck effect were used to describe the dynamic behavior of the EMPS. The results have shown that the combination of grey and black-box models was able to perform better than the grey-box model and that the proposed friction models are also able to improve the relativeerror. This encourages further research on the application of the concept of ensemble model construction from machine learning to the nonlinear system identication context towards more accurate model construction.


Author(s):  
Albert Peiret ◽  
Farnood Gholami ◽  
József Kövecses ◽  
Josep M. Font-Llagunes

Simulation of large-scale multibody systems with unilateral contacts requires formulations with which good computational performance can be achieved. The availability of many solver algorithms for Linear Complementarity Problems (LCP) makes the LCP-based formulations a good candidate for this. However, considering friction in contacts asks for new friction models compatible with this kind of formulations. Here, a new, regularized friction model is presented to approximate the Coulomb model, which allows to formulate the multibody system dynamics as a LCP with bounds. Moreover, a bristle approach is used to approximate the stiction force, so that it improves the numerical behaviour of the system and makes it able to handle redundancy coming from the friction interfaces. Several examples using a 3D wheel model has been carried out, and the proposed friction model shows a better approximation of the Coulomb model compared to other LCP-based formulations.


Author(s):  
Albert Peiret ◽  
József Kövecses ◽  
Josep M. Font-Llagunes

The dynamics of multibody systems with many contacts are frequently formulated as a Linear Complementarity Problem (LCP), for which several direct or iterative algorithms are available to solve it efficiently. These formulations rely on discretized friction models that approximate the friction cone of the Coulomb model to a pyramid. However, they produce rank-deficient LCPs even though the physical problem does not have constraint redundancy and has a unique solution. Here, a new discretized friction model is presented which results in an LCP formulation with a full-rank lead matrix. This model relies on an inertial term to couple the equations of the model, which behaves as close to the Coulomb model as the other discretized models. Moreover, it is shown through some simulations that some algorithms can be used with this formulation, which could not be used with the other rank-deficient LCP formulations.


2021 ◽  
pp. 004051752110308
Author(s):  
Yang Liu ◽  
Zhong Xiang ◽  
Xiangqin Zhou ◽  
Zhenyu Wu ◽  
Xudong Hu

Friction between the tow and tool surface normally happens during the tow production, fabric weaving, and application process and has an important influence on the quality of the woven fabric. Based on this fact, this paper studied the influence of tension and relative velocity on the three kinds of untwisted-glass-fiber tow-on-roller friction with a Capstan-based test setup. Furthermore, an improved nonlinear friction model taking both tension and velocity into account was proposed. According to statistical test results, firstly, the friction coefficient was found to be positively correlated with tension and relative velocity. Secondly, tension and velocity were complementary on the tow-on-roller friction behavior, with neither being superior to the other. Thirdly, an improved model was found to present well the nonlinear characteristics between friction coefficient and tension and velocity, and predicational results of the model were found to agree well with the observations from Capstan tests.


2012 ◽  
Vol 81 ◽  
pp. 39-48 ◽  
Author(s):  
Ha Xuan Nguyen ◽  
Christoph Edeler ◽  
Sergej Fatikow

This paper gives an overview about problems of modeling of piezo-actuated stick-slip micro-drives. It has been found that existing prototypes of such devices have been investigated empirically. There is only few research dealing with the theory behind this kind of drives. By analyzing the current research activities in this field, it is believed that the model of the drive depends strongly on the friction models, but in most cases neglecting any influences of the guilding system.These analyses are of fundamental importance for an integrated model combining friction model and mechanical model offering promising possibilities for future research.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1357
Author(s):  
Andreea-Mariana Negrescu ◽  
Anisoara Cimpean

The critical role of the immune system in host defense against foreign bodies and pathogens has been long recognized. With the introduction of a new field of research called osteoimmunology, the crosstalk between the immune and bone-forming cells has been studied more thoroughly, leading to the conclusion that the two systems are intimately connected through various cytokines, signaling molecules, transcription factors and receptors. The host immune reaction triggered by biomaterial implantation determines the in vivo fate of the implant, either in new bone formation or in fibrous tissue encapsulation. The traditional biomaterial design consisted in fabricating inert biomaterials capable of stimulating osteogenesis; however, inconsistencies between the in vitro and in vivo results were reported. This led to a shift in the development of biomaterials towards implants with osteoimmunomodulatory properties. By endowing the orthopedic biomaterials with favorable osteoimmunomodulatory properties, a desired immune response can be triggered in order to obtain a proper bone regeneration process. In this context, various approaches, such as the modification of chemical/structural characteristics or the incorporation of bioactive molecules, have been employed in order to modulate the crosstalk with the immune cells. The current review provides an overview of recent developments in such applied strategies.


2014 ◽  
Vol 997 ◽  
pp. 321-324
Author(s):  
Wei Zheng ◽  
Guang Chun Wang ◽  
Bing Tao Tang ◽  
Xiao Juan Lin ◽  
Yan Zhi Sun

After modifying the Wahime/Bay friction model, a new friction model suitable for micro-forming process without lubrication is established. In this model, it is shows that the friction coefficient is a function of strain hardening exponent, the normal pressure and the initial yield stress of material. Based on the experimental data, the micro-upsetting process is simulated using the proposed friction model. The simulation results are used to investigate the size effect on the dry friction behavior. It is found that the Coulomb’s friction coefficient is dropping with miniaturization of specimens when the amount of reduction is not too large.


Author(s):  
Yun-Hsiang Sun ◽  
Tao Chen ◽  
Christine Qiong Wu ◽  
Cyrus Shafai

In this paper, we provide not only key knowledge for friction model selection among candidate models but also experimental friction features compared with numerical predictions reproduced by the candidate models. A motor-driven one-dimensional sliding block has been designed and fabricated in our lab to carry out a wide range of control tasks for the friction feature demonstrations and the parameter identifications of the candidate models. Besides the well-known static features such as break-away force and viscous friction, our setup experimentally demonstrates subtle dynamic features that characterize the physical behavior. The candidate models coupled with correct parameters experimentally obtained from our setup are taken to simulate the features of interest. The first part of this work briefly introduces the candidate friction models, the friction features of interest, and our experimental approach. The second part of this work is dedicated to the comparisons between the experimental features and the numerical model predictions. The discrepancies between the experimental features and the numerical model predictions help researchers to judge the accuracy of the models. The relation between the candidate model structures and their numerical friction feature predictions is investigated and discussed. A table that summarizes how to select the most optimal friction model among a variety of engineering applications is presented at the end of this paper. Such comprehensive comparisons have not been reported in previous literature.


2010 ◽  
Vol 1 ◽  
pp. 163-171 ◽  
Author(s):  
W Merlijn van Spengen ◽  
Viviane Turq ◽  
Joost W M Frenken

We have replaced the periodic Prandtl–Tomlinson model with an atomic-scale friction model with a random roughness term describing the surface roughness of micro-electromechanical systems (MEMS) devices with sliding surfaces. This new model is shown to exhibit the same features as previously reported experimental MEMS friction loop data. The correlation function of the surface roughness is shown to play a critical role in the modelling. It is experimentally obtained by probing the sidewall surfaces of a MEMS device flipped upright in on-chip hinges with an AFM (atomic force microscope). The addition of a modulation term to the model allows us to also simulate the effect of vibration-induced friction reduction (normal-force modulation), as a function of both vibration amplitude and frequency. The results obtained agree very well with measurement data reported previously.


Author(s):  
Chao Xu ◽  
Dongwu Li ◽  
Muzio M. Gola ◽  
Chiara Gastaldi

In turbine blade systems, under-platform dampers are widely used to attenuate excessive resonant vibrations. Subjected to vibration excitation, the components with frictionally constrained interfaces can involve very complex contact kinematics induced by tangential and normal relative motions. To effectively calculate the dynamics of a blade-damper system, contact models which can accurately reproduce the interface normal and tangential motions are required. The large majority of works have been developed using macroslip friction models to model the friction damping at the contact interface. However, for those cases with small tangential displacement where high normal loads are applied, macroslip models are not enough to give accurate results. In this paper two recently published microslip models are compared, between them and against the simple macroslip spring-slider model. The aim is to find to which extent these models can accurately predict damper mechanics. One model is the so called GG array, where an array of macroslip elements is used. Each macroslip element of the GG array is assigned its own contact parameters and for each of them four parameters are needed: normal stiffness, tangential stiffness, normal gap and friction coefficient. The other one is a novel continuous microslip friction model. The model is based on a modification of the original classic IWAN model to couple normal and tangential contact loads. Like the GG array the model needs normal and tangential stiffness, and friction coefficient. Unlike the GG array the model is continuous and, instead of the normal gap required by the GG array, the Modified IWAN model needs a preload value. The two models are here applied to the study of the mechanics of a laboratory under-platform damper test rig. The results from the two models are compared and allow their difference, both for damper mechanics and for the complex-spring coefficients, to be assessed.


Sign in / Sign up

Export Citation Format

Share Document