scholarly journals Effect of Climate Change on Land Degradation

Degradation currently affects 25 % of the land on Earth and 40 % of the agricultural land on Earth. Environmental effects of soil degradation are widespread, including increased soil losses, deterioration of water quality, decline of biodiversity and degradation of ecological resources and associated values, especially where actual land use is disrespectful (natural use in circumstances where land is in conflict with the environment. Changes in temperature, wind velocity, and precipitation patterns can affect the production of plant biomass, land use, land cover, soil moisture, infiltration rate, runoff and crop management, and eventually land degradation. In recent decades, powerful partnerships have been seen between global climate change and land loss processes. In order to reliably define or forecast the effect of climate change on the loss of land, models of climate change and land use models should be combined with hydrology. Until the first seventies land degradation and geological process weren't thought of a serious issue in most Mediterranean regions. Traditional agricultural systems were believed to be able to keep those processes under control. So low priority was appointed to research programmes and comes on eroding and conservation, preference being given to the impact of farm machinery on soil structure and compaction beside the role of organic matter within the soil. To regulate the destruction of soil, it is therefore important to have limited and global strategies and regulations. Land use and land cover changes influence carbon fluxes and GHGs emissions that directly alter atmospherical composition and radioactive forcing properties. Land degradation aggravates greenhouse gas-induced global climate change through the discharge of CO2 from cleared and dead vegetation and thru the reduction of the carbon sequestration potential of degraded land. The present analysis furnishes effects of climate amendment on land degradation.

2019 ◽  
Vol 1 (1) ◽  
pp. 25-40
Author(s):  
F.A. Rosete Vergés ◽  
Gustavo Martín Morales ◽  
M.F. Onofre Villalva

The present work raises the importance of land use planning for the global climate change adaptation in coastal municipalities, in particular against the effects caused by natural hazards associated with climate change. The first part presents the current situation of the main land use planning instruments in the coastal municipalities of Mexico, in the second part the current environmental situation in said municipalities is presented, identifying the degree of their transformation, the alteration of the ecosystems in the context of watersheds, the impact on the drainage network and mangrove losses. Under these circumstances, and taking into account that the future climate scenarios indicate an increase in the intensity and frequency of tropical cyclones, most of the coastal municipalities are in a situation of very high to medium vulnerability. The third part of the text presents the concrete action that coastal municipalities can take to be more resilient in the face of the challenges posed by global climate change. These actions can be grouped into four major thematic groups: Implementation of an early warning system based on a municipal information system, conserving the first defense barrier (dunes, mangroves and coastal lagoons) against cyclones and storm tides, decrease the vulnerability of infrastructure, productive systems and population, and restoration and conservation of ecosystems with a productive approach to lessen the impact of extreme events.


2021 ◽  
Author(s):  
Li Gu ◽  
Zhiwen Gong ◽  
Yuankun Bu

Abstract Forest fragmentation is one of the major environmental issues that the international community is generally concerned about under the background of global climate change. Studying the impact and the interaction mechanism of land use change processes on landscape fragmentation is important to gaining a comprehensive understanding of the ecosystem response to human activities and global climate change. Based on the implementation background for the “Grain for Green” Project, we selected the Loess Plateau as the research area and used the coupled future land use simulation (FLUS) model and landscape fragmentation model to explore the temporal and spatial changes in forest and grass landscape fragmentation. The results showed that (1) Woodland, grassland, and cropland are the main landscape types, accounting for about 90% of the total area. In addition, the area of cropland initially increased and then decreased, while the area of woodland and grassland exhibited the opposite trend Oover the last 35 years. In particular, the period from 2000 to 2015 was a forest and grass restoration stage, and the average annual rate of forest and grass restoration reached 0.56%. (2) The FLUS model was used to predict the land use on the Loess Plateau in 2030. The kappa coefficient was 0.85, and the figure of merit coefficient (FOM) was 0.11 for a 1% random sampling, which are within a reasonable range, and the simulation results are also consistent with the objective change in the current social and economic development. (3) The fragmentation of woodland and grassland were dominated by edge type and core type. The core type had a concentrated distribution and an absolute advantage, accounting for more than 75% of the total area. It is predicted that the landscape fragmentation will gradually slowdown in 2030 under different intensities of the “Grain for Green” project. The dynamics of landscape fragmentation based on land use changes are conducive to the reasonable planning and objective evaluation of woodland and grassland spatial allocation and quality improvement, and provide an important basis for the formulation of ecological protection and land management policies.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Xiangzheng Deng ◽  
Chunhong Zhao ◽  
Haiming Yan

There have been tremendous changes in the global land use pattern in the past 50 years, which has directly or indirectly exerted significant influence on the global climate change. Quantitative analysis for the impacts of land use and land cover changes (LUCC) on surface climate is one of the core scientific issues to quantitatively analyze the impacts of LUCC on the climate so as to scientifically understand the influence of human activities on the climate change. This paper comprehensively analyzed the primary scientific issues about the impacts of LUCC on the regional climate and reviewed the progress in relevant researches. Firstly, it introduced the influence mechanism of LUCC on the regional climate and reviewed the progress in the researches on the biogeophysical process and biogeochemical process. Then the model simulation of effects of LUCC on the regional climate was introduced, and the development from the global climate model to the regional climate model and the integration of the improved land surface model and the regional climate model were reviewed in detail. Finally, this paper discussed the application of the regional climate models in the development and management of agricultural land and urban land.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong Zhang ◽  
Lu-yu Liu ◽  
Yi Liu ◽  
Man Zhang ◽  
Cheng-bang An

AbstractWithin the mountain altitudinal vegetation belts, the shift of forest tree lines and subalpine steppe belts to high altitudes constitutes an obvious response to global climate change. However, whether or not similar changes occur in steppe belts (low altitude) and nival belts in different areas within mountain systems remain undetermined. It is also unknown if these, responses to climate change are consistent. Here, using Landsat remote sensing images from 1989 to 2015, we obtained the spatial distribution of altitudinal vegetation belts in different periods of the Tianshan Mountains in Northwestern China. We suggest that the responses from different altitudinal vegetation belts to global climate change are different. The changes in the vegetation belts at low altitudes are spatially different. In high-altitude regions (higher than the forest belts), however, the trend of different altitudinal belts is consistent. Specifically, we focused on analyses of the impact of changes in temperature and precipitation on the nival belts, desert steppe belts, and montane steppe belts. The results demonstrated that the temperature in the study area exhibited an increasing trend, and is the main factor of altitudinal vegetation belts change in the Tianshan Mountains. In the context of a significant increase in temperature, the upper limit of the montane steppe in the eastern and central parts will shift to lower altitudes, which may limit the development of local animal husbandry. The montane steppe in the west, however, exhibits the opposite trend, which may augment the carrying capacity of pastures and promote the development of local animal husbandry. The lower limit of the nival belt will further increase in all studied areas, which may lead to an increase in surface runoff in the central and western regions.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Yanyun Liu ◽  
Lian Xie ◽  
John M. Morrison ◽  
Daniel Kamykowski

The regional impact of global climate change on the ocean circulation around the Galápagos Archipelago is studied using the Hybrid Coordinate Ocean Model (HYCOM) configured for a four-level nested domain system. The modeling system is validated and calibrated using daily atmospheric forcing derived from the NCEP/NCAR reanalysis dataset from 1951 to 2007. The potential impact of future anthropogenic global warming (AGW) in the Galápagos region is examined using the calibrated HYCOM with forcing derived from the IPCC-AR4 climate model. Results show that although the oceanic variability in the entire Galápagos region is significantly affected by global climate change, the degree of such effects is inhomogeneous across the region. The upwelling region to the west of the Isabella Island shows relatively slower warming trends compared to the eastern Galápagos region. Diagnostic analysis suggests that the variability in the western Galápagos upwelling region is affected mainly by equatorial undercurrent (EUC) and Panama currents, while the central/east Galápagos is predominantly affected by both Peru and EUC currents. The inhomogeneous responses in different regions of the Galápagos Archipelago to future AGW can be explained by the incoherent changes of the various current systems in the Galápagos region as a result of global climate change.


Author(s):  
Viktoriia Sydorenko ◽  

This article is devoted to an overview of such a category of migrants as climate refugees. The author pays attention to the general characteristics of the impact of global climate change on migrants. Particular attention is paid to the disclosure of the term “climate refugee”, the reasons for the emergence of this category of people, as well as the problems of counting climate refugees. The author also provides examples for solving these problems.


2014 ◽  
Vol 937 ◽  
pp. 663-668
Author(s):  
Qiu Jing Li ◽  
Xiao Li Hou ◽  
Li Xue ◽  
Hong Yue Chen ◽  
Yun Ting Hao

Climate change refers to man-made changes in our climate, which is caused by changes in temperature, precipitation, and CO2. There is a lot of data coming from all over the world indicating that phenology of garden plants and biodiversity are being impacted by climate change. In the context of climate change, landscape plants can enhance carbon sink function, improve plant design, and mitigate climate change and so on. To determine the impact of these changes on garden plants, scientists would need to strengthen the study of garden plants under global climate change, including different garden type responses to climate change, invaliding species phenology study, extreme weather impacts on landscape plant phenology, the dominant factor of affecting garden plants in different regions, interactions of multiple environmental factors on influence mechanism of garden plants.


2019 ◽  
Vol 8 (1) ◽  
pp. 87-91
Author(s):  
Bhanu Priya Chouhan ◽  
Monika Kannan

The world is undergoing the largest wave of urban growth in history. More than half of the world’s population now lives in towns and cities, and by 2030 this number will swell to about 5 billion. ‘Urbanization has the potential to usher in a new era of wellbeing, resource efficiency and economic growth. But due to increased population the pressure of demand also increases in urban areas’ (Drakakis-Smith, David, 1996). The loss of agricultural land to other land uses occasioned by urban growth is an issue of growing concern worldwide, particularly in the developing countries like India. This paper is an attempt to assess the impact of urbanization on land use and land cover patterns in Ajmer city. Recent trends indicate that the rural urban migration and religious significance of the place attracting thousands of tourists every year, have immensely contributed in the increasing population of city and is causing change in land use patterns. This accelerating urban sprawl has led to shrinking of the agricultural land and land holdings. Due to increased rate of urbanization, the agricultural areas have been transformed into residential and industrial areas (Retnaraj D,1994). There are several key factors which cause increase in population here such as Smart City Projects, potential for employment, higher education, more comfortable and quality housing, better health facilities, high living standard etc. Population pressure not only directly increases the demand for food, but also indirectly reduces its supply through building development, environmental degradation and marginalization of food production (Aldington T, 1997). Also, there are several issues which are associated with continuous increase in population i.e. land degradation, pollution, poverty, slums, unaffordable housing etc. Pollution, formulation of slums, transportation congestion, environmental hazards, land degradation and crime are some of the major impacts of urbanization on Ajmer city. This study involves mapping of land use patterns by analyzing data and satellite imagery taken at different time periods. The satellite images of year 2000 and 2017 are used. The change detection techniques are used with the help of Geographical Information System software like ERDAS and ArcGIS. The supervised classification of all the three satellite images is done by ERDAS software to demarcate and analyze land use change.


2012 ◽  
Vol 49 (5) ◽  
pp. 980-989 ◽  
Author(s):  
S. Bajocco ◽  
A. De Angelis ◽  
L. Perini ◽  
A. Ferrara ◽  
L. Salvati

Sign in / Sign up

Export Citation Format

Share Document