CLIMATE REFUGEES AS A NATURAL RESULT OF CLIMATE CHANGE

Author(s):  
Viktoriia Sydorenko ◽  

This article is devoted to an overview of such a category of migrants as climate refugees. The author pays attention to the general characteristics of the impact of global climate change on migrants. Particular attention is paid to the disclosure of the term “climate refugee”, the reasons for the emergence of this category of people, as well as the problems of counting climate refugees. The author also provides examples for solving these problems.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong Zhang ◽  
Lu-yu Liu ◽  
Yi Liu ◽  
Man Zhang ◽  
Cheng-bang An

AbstractWithin the mountain altitudinal vegetation belts, the shift of forest tree lines and subalpine steppe belts to high altitudes constitutes an obvious response to global climate change. However, whether or not similar changes occur in steppe belts (low altitude) and nival belts in different areas within mountain systems remain undetermined. It is also unknown if these, responses to climate change are consistent. Here, using Landsat remote sensing images from 1989 to 2015, we obtained the spatial distribution of altitudinal vegetation belts in different periods of the Tianshan Mountains in Northwestern China. We suggest that the responses from different altitudinal vegetation belts to global climate change are different. The changes in the vegetation belts at low altitudes are spatially different. In high-altitude regions (higher than the forest belts), however, the trend of different altitudinal belts is consistent. Specifically, we focused on analyses of the impact of changes in temperature and precipitation on the nival belts, desert steppe belts, and montane steppe belts. The results demonstrated that the temperature in the study area exhibited an increasing trend, and is the main factor of altitudinal vegetation belts change in the Tianshan Mountains. In the context of a significant increase in temperature, the upper limit of the montane steppe in the eastern and central parts will shift to lower altitudes, which may limit the development of local animal husbandry. The montane steppe in the west, however, exhibits the opposite trend, which may augment the carrying capacity of pastures and promote the development of local animal husbandry. The lower limit of the nival belt will further increase in all studied areas, which may lead to an increase in surface runoff in the central and western regions.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Yanyun Liu ◽  
Lian Xie ◽  
John M. Morrison ◽  
Daniel Kamykowski

The regional impact of global climate change on the ocean circulation around the Galápagos Archipelago is studied using the Hybrid Coordinate Ocean Model (HYCOM) configured for a four-level nested domain system. The modeling system is validated and calibrated using daily atmospheric forcing derived from the NCEP/NCAR reanalysis dataset from 1951 to 2007. The potential impact of future anthropogenic global warming (AGW) in the Galápagos region is examined using the calibrated HYCOM with forcing derived from the IPCC-AR4 climate model. Results show that although the oceanic variability in the entire Galápagos region is significantly affected by global climate change, the degree of such effects is inhomogeneous across the region. The upwelling region to the west of the Isabella Island shows relatively slower warming trends compared to the eastern Galápagos region. Diagnostic analysis suggests that the variability in the western Galápagos upwelling region is affected mainly by equatorial undercurrent (EUC) and Panama currents, while the central/east Galápagos is predominantly affected by both Peru and EUC currents. The inhomogeneous responses in different regions of the Galápagos Archipelago to future AGW can be explained by the incoherent changes of the various current systems in the Galápagos region as a result of global climate change.


2014 ◽  
Vol 937 ◽  
pp. 663-668
Author(s):  
Qiu Jing Li ◽  
Xiao Li Hou ◽  
Li Xue ◽  
Hong Yue Chen ◽  
Yun Ting Hao

Climate change refers to man-made changes in our climate, which is caused by changes in temperature, precipitation, and CO2. There is a lot of data coming from all over the world indicating that phenology of garden plants and biodiversity are being impacted by climate change. In the context of climate change, landscape plants can enhance carbon sink function, improve plant design, and mitigate climate change and so on. To determine the impact of these changes on garden plants, scientists would need to strengthen the study of garden plants under global climate change, including different garden type responses to climate change, invaliding species phenology study, extreme weather impacts on landscape plant phenology, the dominant factor of affecting garden plants in different regions, interactions of multiple environmental factors on influence mechanism of garden plants.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Luyu Chang ◽  
Jianming Xu ◽  
Xuexi Tie ◽  
Wei Gao

AbstractSevere ozone (O3) episodes occur frequently in Shanghai during late-summers. We define geopotential height averaged over the key area region (122.5°E-135°E, 27.5°N -35°N) at 500 hPa as a WPSH_SHO3 index which has high positive correlation with surface O3 concentration in Shanghai. In addition, the index has a significant long-term increasing trend during the recent 60 years. Analysis shows the meteorological conditions under the strong WPSH_SHO3 climate background (compared to the weak background) have several important anomalies: (1) A strong WPSH center occurs over the key area region. (2) The cloud cover is less, resulting in high solar radiation and low humidity, enhancing the photochemical reactions of O3. (3) The near-surface southwesterly winds are more frequent, enhancing the transport of upwind pollutants and O3 precursors from polluted regions to Shanghai and producing higher O3 chemical productions. This study suggests that the global climate change could lead to a stronger WPSH in the key region, enhancing ozone pollution in Shanghai. A global chemical/transport model (MOZART-4) is applied to show that the O3 concentrations can be 30 ppbv higher under a strong WPSH_SHO3 condition than a weak condition, indicating the important effect of the global climate change on local air pollution in Shanghai.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
N Boussoussou ◽  
M Boussoussou ◽  
M Rakovics ◽  
L Entz ◽  
A Nemes

Abstract Background There is substantial evidence that the health threat of global climate change is real and it could be a medical emergency. The impact of climate change on health is mediated through atmospheric parameters which are direct environmental stressors on the human body and have a potential cardiovascular (CV) morbidity and mortality effect. Acute cardiovascular diseases (ACVDs) are already major public health issues and in the future unfavourable atmospheric situations, such as increasingly volatile fronts and their negative effects can further increase this problem. Despite evidence about the importance of different atmospheric parameters on health outcomes, there have been few results for atmospheric front patterns' CV effects. Weather fronts are the most complex atmospheric phenomena therefore these atmospheric parameters might have the greatest influence on ACVDs. Purpose We aimed to explore the effects of atmospheric front patterns on ACVDs. Methods A time series Poisson-regression analysis was used to analyse 6499 ACVD hospital admissions, during a five-year period (2009–2013), in light of front patterns. Covariates were three-day (target day and the two previous days) front sequence patterns comprised of the five major front types (no front, warm front, occluded front, cold front, stationary front). Relative risk (RR) estimates for front effects were adjusted for seasonality. The relationship on all ACVDs combined and separately on patient groups by major CV risk factors (hypertension, hyperlipidaemia, diabetes, previous CV diseases) was examined. Results We found that in general, front patterns containing warm front days had a detrimental effect. A warm front, when followed by two days with no fronts present, increased RR by 46% (CI: 4–89%, p=0,015). Cold fronts however were protective. A no front – cold front – occluded front pattern corresponded to a 28% (CI: 8–49%, p=0,037) decrease in RR, with this pattern being present in 1.1% of all days of the study period. Out of the group specific results an occluded front, following days with no fronts present, showed to have the largest effect on hyperlipidaemic patients, increasing RR by 144% (CI: 51–295%, p<0.001). Conclusions This work provides both independent evidence of front patterns' CV effects and a novel tool to investigate and help the understanding of complex associations between atmospheric fronts and ACVDs. The importance of our findings is growing in the context that extreme atmospheric conditions and changes are likely to become more common in the future as a result of climate change. Medical meteorology may open up a new horizon and become an important field of preventive cardiology in the future. In conclusion, a better understanding of atmospheric front effects is of particular importance in order to help identify possible targets for future prevention strategies.


2012 ◽  
Vol 51 (8) ◽  
pp. 1441-1454 ◽  
Author(s):  
Sachiho A. Adachi ◽  
Fujio Kimura ◽  
Hiroyuki Kusaka ◽  
Tomoshige Inoue ◽  
Hiroaki Ueda

AbstractIn this study, the impact of global climate change and anticipated urbanization over the next 70 years is estimated with regard to the summertime local climate in the Tokyo metropolitan area (TMA), whose population is already near its peak now. First, five climate projections for the 2070s calculated with the aid of general circulation models (GCMs) are used for dynamical downscaling experiments to evaluate the impact of global climate changes using a regional climate model. Second, the sensitivity of future urbanization until the 2070s is examined assuming a simple developing urban scenario for the TMA. These two sensitivity analyses indicate that the increase in the surface air temperature from the 1990s to the 2070s is about 2.0°C as a result of global climate changes under the A1B scenario in the Intergovernmental Panel on Climate Change’s Special Report on Emissions Scenarios (SRES) and about 0.5°C as a result of urbanization. Considering the current urban heat island intensity (UHII) of 1.0°C, the possible UHII in the future reaches an average of 1.5°C in the TMA. This means that the mitigation of the UHII should be one of the ways to adapt to a local temperature increase caused by changes in the future global climate. In addition, the estimation of temperature increase due to global climate change has an uncertainty of about 2.0°C depending on the GCM projection, suggesting that the local climate should be projected on the basis of multiple GCM projections.


2021 ◽  
Vol 325 ◽  
pp. 08010
Author(s):  
Gita Ivana Suci Lestari Faski ◽  
Ignasius Loyola Setyawan Purnama

Global climate change that occurred in this century can affect the pattern of rain and increase in temperature on earth. This study aims to determine and analyze the increase in rainfall, air temperature, potential evapotranspiration and actual evapotranspiration in the Bengkulu watershed. For this reason, the regional rainfall is calculated using the Thiessen Polygon, the mean air temperature of the watershed based on the median elevation, potential evapotranspiration using the Thornthwaite Method and actual evapotranspiration using the basis of the difference in rainfall to potential evapotranspiration. The results showed that every year there was an increase in rainfall, air temperature, potential evapotranspiration and actual evapotranspiration in the Bengkulu Watershed. In the 2009-2013 period, the average annual rainfall of 3,581 mm increased to 3,641 mm in the 2014-2018 period. For air temperature, the average monthly air temperature in the Bengkulu Watershed for the 2009-2013 period was 25.8°C, while the air temperature in the 2014-2018 period was 26.1°C. This means that in a period of 5 years there is an increase in temperature of 0.3°C. Furthermore, due to the increase in air temperature, there was an increase in the average monthly potential evapotranspiration from the 2009-2013 period to the 2014-2018 period, namely from 1,493 mm to 1,537 mm, while for actual evapotranspiration there was an increase from 1,486 mm to 1,518 mm.


2019 ◽  
Vol 8 (4) ◽  
pp. 551
Author(s):  
N. K. Tokarevich ◽  
A. A. Tronin ◽  
B. R. Gnativ ◽  
R. V. Buzinov ◽  
O. V. Sokolova ◽  
...  

.


Sign in / Sign up

Export Citation Format

Share Document