scholarly journals The Truncated Power Lomax Distribution: Properties and Applications

2018 ◽  
Vol 16 (9) ◽  
pp. 655-668
Author(s):  
Sirinapa ARYUYUEN ◽  
Winai BODHISUWAN

A new truncated distribution, called the truncated power Lomax (TPL) distribution, is proposed. This is a truncated version of the power Lomax distribution. The TPL distribution has increasing and decreasing shapes of the hazard function. Some statistical properties, such as moments, survival, hazard, and quantile functions, are discussed. The maximum likelihood estimation (MLE) is constructed for estimating the unknown parameters of the TPL distribution. Moreover, the distribution has been fitted with real data sets to illustrate the usefulness of the proposed distribution. From the results of the example applications, the TPL distribution provides a consistently better fit than the other distributions, i.e., power Lomax and Lomax.

Author(s):  
Duha Hamed ◽  
Ahmad Alzaghal

AbstractA new generalized class of Lindley distribution is introduced in this paper. This new class is called the T-Lindley{Y} class of distributions, and it is generated by using the quantile functions of uniform, exponential, Weibull, log-logistic, logistic and Cauchy distributions. The statistical properties including the modes, moments and Shannon’s entropy are discussed. Three new generalized Lindley distributions are investigated in more details. For estimating the unknown parameters, the maximum likelihood estimation has been used and a simulation study was carried out. Lastly, the usefulness of this new proposed class in fitting lifetime data is illustrated using four different data sets. In the application section, the strength of members of the T-Lindley{Y} class in modeling both unimodal as well as bimodal data sets is presented. A member of the T-Lindley{Y} class of distributions outperformed other known distributions in modeling unimodal and bimodal lifetime data sets.


Author(s):  
JIJU GILLARIOSE ◽  
Lishamol Tomy

In this article, we dened a new four-parameter model called Marshall-Olkin extended power Lomax distribution and studied its properties. Limiting distributions of sample maxima and sample minima are derived. The reliability of a system when both stress and strength follows the new distribution is discussed and associated characteristics are computed for simulated data. Finally, utilizing maximum likelihood estimation, the goodness of the distribution is tested for real data.


Author(s):  
Mohamed G. Khalil ◽  
Wagdy M. Kamel

A new three-parameter life parametric model called the Marshall-Olkin generalized Weibull is defined and studied. Relevant properties are mathematically derived and analyzed. The new density exhibits various important symmetric and asymmetric shapes with different useful kurtosis. The new failure rate can be “constant”, “upside down-constant (reversed U-HRF-constant)”, “increasing then constant”, “monotonically increasing”, “J-HRF” and “monotonically decreasing”. The method of maximum likelihood is employed to estimate the unknown parameters. A graphical simulation is performed to assess the performance of the maximum likelihood estimation. We checked and proved empirically the importance, applicability and flexibility of the new Weibull model in modeling various symmetric and asymmetric types of data. The new distribution has a high ability to model different symmetric and asymmetric types of data.


2017 ◽  
Vol 40 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Mirza Naveed Shahzad ◽  
Faton Merovci ◽  
Zahid Asghar

The Singh-Maddala distribution is very popular to analyze the data on income, expenditure, actuarial, environmental, and reliability related studies. To enhance its scope and application, we propose four parameters transmutedSingh-Maddala distribution, in this study. The proposed distribution is relatively more flexible than the parent distribution to model a variety of data sets. Its basic statistical properties, reliability function, and behaviors of the hazard function are derived. The hazard function showed the decreasing and an upside-down bathtub shape that is required in various survival analysis. The order statistics and generalized TL-moments with their special cases such as L-, TL-, LL-, and LH-moments are also explored. Furthermore, the maximum likelihood estimation is used to estimate the unknown parameters of the transmuted Singh-Maddala distribution. The real data sets are considered to illustrate the utility and potential of the proposed model. The results indicate that the transmuted Singh-Maddala distribution models the datasets better than its parent distribution.


Author(s):  
Innocent Boyle Eraikhuemen ◽  
Terna Godfrey Ieren ◽  
Tajan Mashingil Mabur ◽  
Mohammed Sa’ad ◽  
Samson Kuje ◽  
...  

The article presents an extension of the Gompertz-Makeham distribution using the Lomax generator of probability distributions. This generalization of the Gompertz-Makeham distribution provides a more skewed and flexible compound model called Lomax Gompertz-Makeham distribution. The paper derives and discusses some Mathematical and Statistical properties of the new distribution. The unknown parameters of the new model are estimated via the method of maximum likelihood estimation. In conclusion, the new distribution is applied to two real life datasets together with two other related models to check its flexibility or performance and the results indicate that the proposed extension is more flexible compared to the other two distributions considered in the paper based on the two datasets used.


Stats ◽  
2018 ◽  
Vol 2 (1) ◽  
pp. 15-31
Author(s):  
Arslan Nasir ◽  
Haitham Yousof ◽  
Farrukh Jamal ◽  
Mustafa Korkmaz

In this work, we introduce a new Burr XII power series class of distributions, which is obtained by compounding exponentiated Burr XII and power series distributions and has a strong physical motivation. The new distribution contains several important lifetime models. We derive explicit expressions for the ordinary and incomplete moments and generating functions. We discuss the maximum likelihood estimation of the model parameters. The maximum likelihood estimation procedure is presented. We assess the performance of the maximum likelihood estimators in terms of biases, standard deviations, and mean square of errors by means of two simulation studies. The usefulness of the new model is illustrated by means of three real data sets. The new proposed models provide consistently better fits than other competitive models for these data sets.


2020 ◽  
pp. 1-8
Author(s):  
Noor Akma Ibrahim ◽  
Mundher Abdullah Khaleel

We propose the generalizations of Burr Type X distribution with two parameters by using the methods of Beta-G, Gamma-G and Weibull-G families of distributions. We discuss maximum likelihood estimation of the model’s parameters. The performances of the parameter’s estimates are assessed via simulation studies under different sets of conditions. In the applications to real data sets, three sets of data are used whereby from the results we can deduce that these models can be used quite effectively in analysing lifetime data. Keywords: cumulative density function; lifetime data; maximum likelihood estimation


2020 ◽  
Vol 9 (2) ◽  
pp. 288-310
Author(s):  
Fazlollah Lak ◽  
Morad Alizadeh ◽  
Hamid Karamikabir

In this article, the Topp-Leone odd log-logistic Gumbel (TLOLL-Gumbel) family of distribution have beenstudied. This family, contains the very flexible skewed density function. We study many aspects of the new model like hazard rate function, asymptotics, useful expansions, moments, generating Function, R´enyi entropy and order statistics. We discuss maximum likelihood estimation of the model parameters. Further, we study flexibility of the proposed family are illustrated of two real data sets.


Author(s):  
Md. Mahabubur Rahman ◽  
Bander Al-Zahrani ◽  
Muhammad Qaiser Shahbaz

In this paper, we have introduced a new family of general transmuted distributions and have studied the cubic transmuted family of distributions in detail. This new class of distributions oers more distributional exibility when bi-modality appear in the data sets. Some special members of the proposed cubic transmuted family of distributions have been discussed. We have investigated, in detail, the proposed cubic transmuted family of distributions for parent exponential distribution. The statistical properties along with the reliability behavior for the cubic transmuted exponential distribution have been studied. We have obtained the expressions for single and joint order statistics when a sample is available from the cubic transmuted exponential distribution. Maximum likelihood estimation of parameters for cubic transmuted exponential distribution has also been discussed. We have also discussed the simulation and real data applications of the proposed distribution.


2020 ◽  
Vol 70 (4) ◽  
pp. 953-978
Author(s):  
Mustafa Ç. Korkmaz ◽  
G. G. Hamedani

AbstractThis paper proposes a new extended Lindley distribution, which has a more flexible density and hazard rate shapes than the Lindley and Power Lindley distributions, based on the mixture distribution structure in order to model with new distribution characteristics real data phenomena. Its some distributional properties such as the shapes, moments, quantile function, Bonferonni and Lorenz curves, mean deviations and order statistics have been obtained. Characterizations based on two truncated moments, conditional expectation as well as in terms of the hazard function are presented. Different estimation procedures have been employed to estimate the unknown parameters and their performances are compared via Monte Carlo simulations. The flexibility and importance of the proposed model are illustrated by two real data sets.


Sign in / Sign up

Export Citation Format

Share Document