scholarly journals Transmuted Singh-Maddala Distribution: A new Flexible and Upside-Down Bathtub Shaped Hazard Function Distribution

2017 ◽  
Vol 40 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Mirza Naveed Shahzad ◽  
Faton Merovci ◽  
Zahid Asghar

The Singh-Maddala distribution is very popular to analyze the data on income, expenditure, actuarial, environmental, and reliability related studies. To enhance its scope and application, we propose four parameters transmutedSingh-Maddala distribution, in this study. The proposed distribution is relatively more flexible than the parent distribution to model a variety of data sets. Its basic statistical properties, reliability function, and behaviors of the hazard function are derived. The hazard function showed the decreasing and an upside-down bathtub shape that is required in various survival analysis. The order statistics and generalized TL-moments with their special cases such as L-, TL-, LL-, and LH-moments are also explored. Furthermore, the maximum likelihood estimation is used to estimate the unknown parameters of the transmuted Singh-Maddala distribution. The real data sets are considered to illustrate the utility and potential of the proposed model. The results indicate that the transmuted Singh-Maddala distribution models the datasets better than its parent distribution.

2018 ◽  
Vol 16 (9) ◽  
pp. 655-668
Author(s):  
Sirinapa ARYUYUEN ◽  
Winai BODHISUWAN

A new truncated distribution, called the truncated power Lomax (TPL) distribution, is proposed. This is a truncated version of the power Lomax distribution. The TPL distribution has increasing and decreasing shapes of the hazard function. Some statistical properties, such as moments, survival, hazard, and quantile functions, are discussed. The maximum likelihood estimation (MLE) is constructed for estimating the unknown parameters of the TPL distribution. Moreover, the distribution has been fitted with real data sets to illustrate the usefulness of the proposed distribution. From the results of the example applications, the TPL distribution provides a consistently better fit than the other distributions, i.e., power Lomax and Lomax.


2020 ◽  
Vol 70 (4) ◽  
pp. 953-978
Author(s):  
Mustafa Ç. Korkmaz ◽  
G. G. Hamedani

AbstractThis paper proposes a new extended Lindley distribution, which has a more flexible density and hazard rate shapes than the Lindley and Power Lindley distributions, based on the mixture distribution structure in order to model with new distribution characteristics real data phenomena. Its some distributional properties such as the shapes, moments, quantile function, Bonferonni and Lorenz curves, mean deviations and order statistics have been obtained. Characterizations based on two truncated moments, conditional expectation as well as in terms of the hazard function are presented. Different estimation procedures have been employed to estimate the unknown parameters and their performances are compared via Monte Carlo simulations. The flexibility and importance of the proposed model are illustrated by two real data sets.


Author(s):  
G. G. Hamedani ◽  
Mahdi Rasekhi ◽  
Sayed Najibi ◽  
Haitham M. Yousof ◽  
Morad Alizadeh

In this paper, a new class of continuous distributions with two extra positive parameters is introduced and is called the Type II General Exponential (TIIGE) distribution. Some special models are presented. Asymptotics, explicit expressions for the ordinary and incomplete moments, moment residual life, reversed residual life, quantile and generating functions and stress-strengh reliability function are derived. Characterizations of this family are obtained based on truncated moments, hazard function, conditional expectation of certain functions of the random variable are obtained. The performance of the maximum likelihood estimators in terms of biases, mean squared errors and confidence interval length is examined by means of a simulation study. Two real data sets are used to illustrate the application of the proposed class.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 412 ◽  
Author(s):  
Hadeel S. Klakattawi ◽  
Wedad H. Aljuhani

In the following article, a new five-parameter distribution, the alpha power exponentiated Weibull-exponential distribution is proposed, based on a newly developed technique. It is of particular interest because the density of this distribution can take various symmetric and asymmetric possible shapes. Moreover, its related hazard function is tractable and showing a great diversity of asymmetrical shaped, including increasing, decreasing, near symmetrical, increasing-decreasing-increasing, increasing-constant-increasing, J-shaped, and reversed J-shaped. Some properties relating to the proposed distribution are provided. The inferential method of maximum likelihood is employed, in order to estimate the model’s unknown parameters, and these estimates are evaluated based on various simulation studies. Moreover, the usefulness of the model is investigated through its application to three real data sets. The results show that the proposed distribution can, in fact, better fit the data, when compared to other competing distributions.


Author(s):  
Mohamed G. Khalil ◽  
Wagdy M. Kamel

A new three-parameter life parametric model called the Marshall-Olkin generalized Weibull is defined and studied. Relevant properties are mathematically derived and analyzed. The new density exhibits various important symmetric and asymmetric shapes with different useful kurtosis. The new failure rate can be “constant”, “upside down-constant (reversed U-HRF-constant)”, “increasing then constant”, “monotonically increasing”, “J-HRF” and “monotonically decreasing”. The method of maximum likelihood is employed to estimate the unknown parameters. A graphical simulation is performed to assess the performance of the maximum likelihood estimation. We checked and proved empirically the importance, applicability and flexibility of the new Weibull model in modeling various symmetric and asymmetric types of data. The new distribution has a high ability to model different symmetric and asymmetric types of data.


Author(s):  
Samuel U. Enogwe ◽  
Chisimkwuo John ◽  
Happiness O. Obiora-Ilouno ◽  
Chrisogonus K. Onyekwere

In this paper, we propose a new lifetime distribution called the generalized weighted Rama (GWR) distribution, which extends the two-parameter Rama distribution and has the Rama distribution as a special case. The GWR distribution has the ability to model data sets that have positive skewness and upside-down bathtub shape hazard rate. Expressions for mathematical and reliability properties of the GWR distribution have been derived. Estimation of parameters was achieved using the method of maximum likelihood estimation and a simulation was performed to verify the stability of the maximum likelihood estimates of the model parameters. The asymptotic confidence intervals of the parameters of the proposed distribution are obtained. The applicability of the GWR distribution was illustrated with a real data set and the results obtained show that the GWR distribution is a better candidate for the data than the other competing distributions being investigated.


Author(s):  
Samuel U. Enogwe ◽  
Happiness O. Obiora-Ilouno ◽  
Chrisogonus K. Onyekwere

This paper introduces an inverse power Akash distribution as a generalization of the Akash distribution to provide better fits than the Akash distribution and some of its known extensions. The fundamental properties of the proposed distribution such as the shapes of the distribution, moments, mean, variance, coefficient of variation, skewness, kurtosis, moment generating function, quantile function, Rényi entropy, stochastic ordering and the distribution of order statistics have been derived. The proposed distribution is observed to be a heavy-tailed distribution and can also be used to model data with upside-down bathtub shape for its hazard rate function. The maximum likelihood estimators of the unknown parameters of the proposed distribution have been obtained. Two numerical examples are given to demonstrate the applicability of the proposed distribution and for the two real data sets, the proposed distribution is found to be superior in its ability to sufficiently model heavy-tailed data than Akash, inverse Akash and power Akash distributions respectively.


Author(s):  
Winai Bodhisuwan ◽  
Pornpop Saengthong

In this paper, a new mixed negative binomial (NB) distribution named as negative binomial-weighted Garima (NB-WG) distribution has been introduced for modeling count data. Two special cases of the formulation distribution including negative binomial- Garima (NB-G) and negative binomial-size biased Garima (NB-SBG) are obtained by setting the specified parameter. Some statistical properties such as the factorial moments, the first four moments, variance and skewness have also been derived. Parameter estimation is implemented using maximum likelihood estimation (MLE) and real data sets are discussed to demonstrate the usefulness and applicability of the proposed distribution.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 62
Author(s):  
Zhengwei Liu ◽  
Fukang Zhu

The thinning operators play an important role in the analysis of integer-valued autoregressive models, and the most widely used is the binomial thinning. Inspired by the theory about extended Pascal triangles, a new thinning operator named extended binomial is introduced, which is a general case of the binomial thinning. Compared to the binomial thinning operator, the extended binomial thinning operator has two parameters and is more flexible in modeling. Based on the proposed operator, a new integer-valued autoregressive model is introduced, which can accurately and flexibly capture the dispersed features of counting time series. Two-step conditional least squares (CLS) estimation is investigated for the innovation-free case and the conditional maximum likelihood estimation is also discussed. We have also obtained the asymptotic property of the two-step CLS estimator. Finally, three overdispersed or underdispersed real data sets are considered to illustrate a superior performance of the proposed model.


Author(s):  
Duha Hamed ◽  
Ahmad Alzaghal

AbstractA new generalized class of Lindley distribution is introduced in this paper. This new class is called the T-Lindley{Y} class of distributions, and it is generated by using the quantile functions of uniform, exponential, Weibull, log-logistic, logistic and Cauchy distributions. The statistical properties including the modes, moments and Shannon’s entropy are discussed. Three new generalized Lindley distributions are investigated in more details. For estimating the unknown parameters, the maximum likelihood estimation has been used and a simulation study was carried out. Lastly, the usefulness of this new proposed class in fitting lifetime data is illustrated using four different data sets. In the application section, the strength of members of the T-Lindley{Y} class in modeling both unimodal as well as bimodal data sets is presented. A member of the T-Lindley{Y} class of distributions outperformed other known distributions in modeling unimodal and bimodal lifetime data sets.


Sign in / Sign up

Export Citation Format

Share Document