scholarly journals Generalizations of Burr Type X Distribution with Applications

2020 ◽  
pp. 1-8
Author(s):  
Noor Akma Ibrahim ◽  
Mundher Abdullah Khaleel

We propose the generalizations of Burr Type X distribution with two parameters by using the methods of Beta-G, Gamma-G and Weibull-G families of distributions. We discuss maximum likelihood estimation of the model’s parameters. The performances of the parameter’s estimates are assessed via simulation studies under different sets of conditions. In the applications to real data sets, three sets of data are used whereby from the results we can deduce that these models can be used quite effectively in analysing lifetime data. Keywords: cumulative density function; lifetime data; maximum likelihood estimation

Author(s):  
Duha Hamed ◽  
Ahmad Alzaghal

AbstractA new generalized class of Lindley distribution is introduced in this paper. This new class is called the T-Lindley{Y} class of distributions, and it is generated by using the quantile functions of uniform, exponential, Weibull, log-logistic, logistic and Cauchy distributions. The statistical properties including the modes, moments and Shannon’s entropy are discussed. Three new generalized Lindley distributions are investigated in more details. For estimating the unknown parameters, the maximum likelihood estimation has been used and a simulation study was carried out. Lastly, the usefulness of this new proposed class in fitting lifetime data is illustrated using four different data sets. In the application section, the strength of members of the T-Lindley{Y} class in modeling both unimodal as well as bimodal data sets is presented. A member of the T-Lindley{Y} class of distributions outperformed other known distributions in modeling unimodal and bimodal lifetime data sets.


2018 ◽  
Vol 33 (1) ◽  
pp. 31-43
Author(s):  
Bol A. M. Atem ◽  
Suleman Nasiru ◽  
Kwara Nantomah

Abstract This article studies the properties of the Topp–Leone linear exponential distribution. The parameters of the new model are estimated using maximum likelihood estimation, and simulation studies are performed to examine the finite sample properties of the parameters. An application of the model is demonstrated using a real data set. Finally, a bivariate extension of the model is proposed.


Stats ◽  
2018 ◽  
Vol 2 (1) ◽  
pp. 15-31
Author(s):  
Arslan Nasir ◽  
Haitham Yousof ◽  
Farrukh Jamal ◽  
Mustafa Korkmaz

In this work, we introduce a new Burr XII power series class of distributions, which is obtained by compounding exponentiated Burr XII and power series distributions and has a strong physical motivation. The new distribution contains several important lifetime models. We derive explicit expressions for the ordinary and incomplete moments and generating functions. We discuss the maximum likelihood estimation of the model parameters. The maximum likelihood estimation procedure is presented. We assess the performance of the maximum likelihood estimators in terms of biases, standard deviations, and mean square of errors by means of two simulation studies. The usefulness of the new model is illustrated by means of three real data sets. The new proposed models provide consistently better fits than other competitive models for these data sets.


2020 ◽  
Vol 9 (2) ◽  
pp. 288-310
Author(s):  
Fazlollah Lak ◽  
Morad Alizadeh ◽  
Hamid Karamikabir

In this article, the Topp-Leone odd log-logistic Gumbel (TLOLL-Gumbel) family of distribution have beenstudied. This family, contains the very flexible skewed density function. We study many aspects of the new model like hazard rate function, asymptotics, useful expansions, moments, generating Function, R´enyi entropy and order statistics. We discuss maximum likelihood estimation of the model parameters. Further, we study flexibility of the proposed family are illustrated of two real data sets.


Author(s):  
Shuhei Ota ◽  
Mitsuhiro Kimura

AbstractThis paper focuses on the parameter estimation for the d-variate Farlie–Gumbel–Morgenstern (FGM) copula ($$d\ge 2$$ d ≥ 2 ), which has $$2^d-d-1$$ 2 d - d - 1 dependence parameters to be estimated; therefore, maximum likelihood estimation is not practical for a large d from the viewpoint of computational complexity. Besides, the restriction for the FGM copula’s parameters becomes increasingly complex as d becomes large, which makes parameter estimation difficult. We propose an effective estimation algorithm for the d-variate FGM copula by using the method of inference functions for margins under the restriction of the parameters. We then discuss its asymptotic normality as well as its performance determined through simulation studies. The proposed method is also applied to real data analysis of bearing reliability.


2018 ◽  
Vol 16 (9) ◽  
pp. 655-668
Author(s):  
Sirinapa ARYUYUEN ◽  
Winai BODHISUWAN

A new truncated distribution, called the truncated power Lomax (TPL) distribution, is proposed. This is a truncated version of the power Lomax distribution. The TPL distribution has increasing and decreasing shapes of the hazard function. Some statistical properties, such as moments, survival, hazard, and quantile functions, are discussed. The maximum likelihood estimation (MLE) is constructed for estimating the unknown parameters of the TPL distribution. Moreover, the distribution has been fitted with real data sets to illustrate the usefulness of the proposed distribution. From the results of the example applications, the TPL distribution provides a consistently better fit than the other distributions, i.e., power Lomax and Lomax.


Author(s):  
Md. Mahabubur Rahman ◽  
Bander Al-Zahrani ◽  
Muhammad Qaiser Shahbaz

In this paper, we have introduced a new family of general transmuted distributions and have studied the cubic transmuted family of distributions in detail. This new class of distributions oers more distributional exibility when bi-modality appear in the data sets. Some special members of the proposed cubic transmuted family of distributions have been discussed. We have investigated, in detail, the proposed cubic transmuted family of distributions for parent exponential distribution. The statistical properties along with the reliability behavior for the cubic transmuted exponential distribution have been studied. We have obtained the expressions for single and joint order statistics when a sample is available from the cubic transmuted exponential distribution. Maximum likelihood estimation of parameters for cubic transmuted exponential distribution has also been discussed. We have also discussed the simulation and real data applications of the proposed distribution.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 62
Author(s):  
Zhengwei Liu ◽  
Fukang Zhu

The thinning operators play an important role in the analysis of integer-valued autoregressive models, and the most widely used is the binomial thinning. Inspired by the theory about extended Pascal triangles, a new thinning operator named extended binomial is introduced, which is a general case of the binomial thinning. Compared to the binomial thinning operator, the extended binomial thinning operator has two parameters and is more flexible in modeling. Based on the proposed operator, a new integer-valued autoregressive model is introduced, which can accurately and flexibly capture the dispersed features of counting time series. Two-step conditional least squares (CLS) estimation is investigated for the innovation-free case and the conditional maximum likelihood estimation is also discussed. We have also obtained the asymptotic property of the two-step CLS estimator. Finally, three overdispersed or underdispersed real data sets are considered to illustrate a superior performance of the proposed model.


2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


Author(s):  
Muhammad Mansoor ◽  
M. H. Tahir ◽  
Aymaan Alzaatreh ◽  
Gauss M. Cordeiro

A new three-parameter compounded extended-exponential distribution “Poisson Nadarajah–Haghighi” is introduced and studied, which is quite flexible and can be used effectively in modeling survival data. It can have increasing, decreasing, upside-down bathtub and bathtub-shaped failure rate. A comprehensive account of the mathematical properties of the model is presented. We discuss maximum likelihood estimation for complete and censored data. The suitability of the maximum likelihood method to estimate its parameters is assessed by a Monte Carlo simulation study. Four empirical illustrations of the new model are presented to real data and the results are quite satisfactory.


Sign in / Sign up

Export Citation Format

Share Document