Proactively improving produced water quality and well performance with innovative biocides for unconventional production

2020 ◽  
Vol 20 (2020) ◽  
pp. 58-59
Author(s):  
Veronica Del Valle Silva ◽  
Bruna Onuki ◽  
Marcela Morales Bobes ◽  
Julieta Mariano
2021 ◽  
Author(s):  
Pavel Dmitrievich Gladkov ◽  
Anastasiia Vladimirovna Zheltikova

Abstract As is known, fractured reservoirs compared to conventional reservoirs have such features as complex pore volume structure, high heterogeneity of the porosity and permeability properties etc. Apart from this, the productivity of a specific well is defined above all by the number of natural fractures penetrated by the wellbore and their properties. Development of fractured reservoirs is associated with a number of issues, one of which is related to uneven and accelerated water flooding due to water breakthrough through fractures to the wellbores, for this reason it becomes difficult to forecast the well performance. Under conditions of lack of information on the reservoir structure and aquifer activity, the 3D digital models of the field generated using the hydrodynamic simulators may feature insufficient predictive capability. However, forecasting of breakthroughs is important in terms of generating reliable HC and water production profiles and decision-making on reservoir management and field facilities for produced water treatment. Identification of possible sources of water flooding and planning of individual parameters of production well operation for the purpose of extending the water-free operation period play significant role in the development of these reservoirs. The purpose of this study is to describe the results of the hydrochemical monitoring to forecast the water flooding of the wells that penetrated a fractured reservoir on the example of a gas condensate field in Bolivia. The study contains data on the field development status and associated difficulties and uncertainties. The initial data were results of monthly analyses of the produced water and the water-gas ratio dynamics that were analyzed and compared to the data on the analogue fields. The data analysis demonstrated that first signs of water flooding for the wells of the field under study may be diagnosed through the monitoring of the produced water mineralization - the water-gas ratio (WGR) increase is preceded by the mineralization increase that may be observed approximately a month earlier. However, the data on the analogue fields shows that this period may be longer – from few months to two years. Thus, the hydrochemical method within integrated monitoring of development of a field with a fractured reservoir could be one of the efficient methods to timely adjust the well operation parameters and may extend the water-free period of its operation.


2021 ◽  
Author(s):  
Michael Enzien ◽  
Sadie Starustka ◽  
Michael Gurecki ◽  
Trinity Fincher-Miller ◽  
Bryce Kuhn ◽  
...  

Abstract Inconsistent bacterial control and monitoring led to variability in Salt Water Disposal (SWD) well performance and injectivity creating excess costs in biocide applications and remedial work. A metagenomics study using Whole Genome Sequencing (WGS) was conducted to determine the source(s) of problematic microorganisms throughout the process life cycle: Freshwater> Drilling> Completion> Flowback> Produced water> SWD. A total of 30 metagenomes were collected from the 6 process stages and identification and quantification of the major microbial taxa from each of these stages were identified. "Taxonomy to Function" associations were identified for all the major taxa found in the SWD fluids. WGS was performed on positive Sulfate Reducing Bacteria (SRB) and Acid Producing Bacteria (APB) media bottles inoculated in the field for a Flowback sample. Four of the six major taxa found in SWD samples are considered groups of microorganisms known to cause microbiologically influenced corrosion (MIC): Clostridia, methanogens, SRB and Iron Reducing bacteria. Thermovirga and Thermotagae, were the two most abundant taxa found in SWD samples, both thermophilic halophilic fermenting bacteria. The Fe reducing bacteria Shewanella was only detected in Drilling and SWD fluids suggesting its source was Drilling fluids. Completion fluid metagenome profiles from two separate sites followed similar patterns. During middle of completions Proteobacteria phyla were dominant taxa represented mostly by Pseudomonas. Other abundant phyla were all characteristic of polymer degrading bacteria. None of these taxa were dominant populations identified in SWD waters. Fresh water only shared similar taxa with Drilling and Completion fluids. A few minor taxa from Drilling and Completion stages show up as significant taxa in SWD fluids. The majority of taxa found in SWD samples appear to originate from Flowback and Produced waters, although at lower abundances than found in SWD samples. It cannot be determined if the microorganisms found in Flowback and Produced waters were endemic to the formation or come from contaminated source waters, i.e. process equipment used to store and transport water sources. Petrotoga mobilis was the dominant population of bacteria that grew in both media bottles, 96% and 77% for SRB and APB, respectively, while Petrotoga was detected at 14% in the field sample. The most abundant bacteria detected in field sample were Clostridia (38%) while only 2.7% were detected in APB media. SRB media bottle had 0.18% SRB detected by WGS; APB media had 9% SRB population abundance. No SRB were detected in corresponding field sample or below detectable limits (BDL) for WGS methods (<0.01%). WGS was forensically used to successfully identify type and source of problematic microorganism in SWD facilities. Results from media bottle and field sample comparisons stress the importance of developing improved field monitoring techniques that more accurately detect the dominant microorganisms.


2020 ◽  
Vol 6 (3) ◽  
Author(s):  
Sharon T. Shaheen

Under the Produced Water Act (“Act”) enacted in the 2019 regular legislative session, the New Mexico Legislature authorized the New Mexico Oil Conservation Division (“OCD”) and the New Mexico Water Quality Control Commission (“WQCC”) to regulate produced water resulting from oil and gas drilling or production. The Act governs the transportation and sale of produced water, recycled water (also referred to as recycled produced water), and treated water (also referred to as treated produced water).


2005 ◽  
Author(s):  
Martha Cather ◽  
Robert Lee ◽  
Ibrahim Gundiler ◽  
Andrew Sung ◽  
Naomi Davidson ◽  
...  

2020 ◽  
Author(s):  
Stefano Rossini ◽  
Giulia Roppoli ◽  
Pamela Mariotti ◽  
Simona Renna ◽  
Matteo Manotti ◽  
...  

Author(s):  
Matthew R. Landsman ◽  
Rahul Sujanani ◽  
Samuel H. Brodfuehrer ◽  
Carolyn M. Cooper ◽  
Addison G. Darr ◽  
...  

Alongside the rising global water demand, continued stress on current water supplies has sparked interest in using nontraditional source waters for energy, agriculture, industry, and domestic needs. Membrane technologies have emerged as one of the most promising approaches to achieve water security, but implementation of membrane processes for increasingly complex waters remains a challenge. The technical feasibility of membrane processes replacing conventional treatment of alternative water supplies (e.g., wastewater, seawater, and produced water) is considered in the context of typical and emerging water quality goals. This review considers the effectiveness of current technologies (both conventional and membrane based), as well as the potential for recent advancements in membrane research to achieve these water quality goals. We envision the future of water treatment to integrate advanced membranes (e.g., mixed-matrix membranes, block copolymers) into smart treatment trains that achieve several goals, including fit-for-purpose water generation, resource recovery, and energy conservation.


2014 ◽  
Vol 556-562 ◽  
pp. 867-871
Author(s):  
Qiu Shi Zhao

It is significative to study sewage treatment process in low permeable oil fields. It could enhance the oil recovery. The water quality characteristics and oil/water separation characteristics were researched during different period process by GC-MS. It shows that there are about 108 kinds of organic matters, including 45 kinds of aliphatic hydrocarbon, 7 kinds of aine, 5 kinds of sulfocompound and 9 kinds of hexacyclic compounds, such as Benzene, phenol, naphthalene and anthracene. The percent of oil droplets which size was less than 10μm is 57.3%, compared to 91.6% which size was more than 50μm. It is difficult to separate the water and oil. The remaining oil was emulsified oil. The process was hard to decrease COD, and some pollutants were existed in water, such as Arsenic, Selenium, Mercury ,Cadmium and Cr6+. It is further proposed to optimize and develop this process to removal oil and suspended solids.


2003 ◽  
Author(s):  
Martha Cather ◽  
Robert Lee ◽  
Ibrahim Gundiler ◽  
Andrew Sung

Sign in / Sign up

Export Citation Format

Share Document