Research of Water Quality in Typical Low Permeability Oilfield Produced Water Treatment

2014 ◽  
Vol 556-562 ◽  
pp. 867-871
Author(s):  
Qiu Shi Zhao

It is significative to study sewage treatment process in low permeable oil fields. It could enhance the oil recovery. The water quality characteristics and oil/water separation characteristics were researched during different period process by GC-MS. It shows that there are about 108 kinds of organic matters, including 45 kinds of aliphatic hydrocarbon, 7 kinds of aine, 5 kinds of sulfocompound and 9 kinds of hexacyclic compounds, such as Benzene, phenol, naphthalene and anthracene. The percent of oil droplets which size was less than 10μm is 57.3%, compared to 91.6% which size was more than 50μm. It is difficult to separate the water and oil. The remaining oil was emulsified oil. The process was hard to decrease COD, and some pollutants were existed in water, such as Arsenic, Selenium, Mercury ,Cadmium and Cr6+. It is further proposed to optimize and develop this process to removal oil and suspended solids.

SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1037-1056 ◽  
Author(s):  
Abdulkareem M. AlSofi ◽  
Ali M. AlKhatib ◽  
Hassan A. Al-Ajwad ◽  
Qiwei Wang ◽  
Badr H. Zahrani

Summary Review of past chemical-enhanced-oil-recovery (EOR) projects illustrates that chemical-EOR implementation can result in produced-fluid-handling issues. However, in all projects such issues were resolved, mainly through a combination of improved demulsifiers and oversized vessels. In previous work, we have demonstrated the potential of surfactant/polymer flooding for a high-temperature/high-salinity carbonate. In consideration of future plans to pilot the process, further assessments were conducted to evaluate any side effects of these EOR chemicals on upstream facilities and determine mitigation plans if needed. In this work, we initially conduct a critical review of past experience. Then, we investigate the surfactant/polymer compatibility with the additives used in processing facilities for demulsification and scale and corrosion inhibition as well as the possible effect of surfactant/polymer on oil/water separation, metal corrosion, and scale inhibition. For this purpose, we first perform a sensitivity-based simulation study to estimate the volumes of produced EOR chemicals. Second, a compatibility study is conducted to evaluate EOR chemical compatibility with oilfield additives (i.e., demulsifier, corrosion inhibitor, and scale inhibitor). Third, bottle tests are conducted using surfactant/polymer solutions prepared in both injection and produced water to evaluate the effect of EOR chemicals on oil/water separation. Separated-water qualities are also evaluated using solvent extraction followed by ultraviolet (UV) visibility testing. Fourth, static autoclave and dynamic rotating tests are performed to evaluate the possible side effects of EOR chemicals on corrosion inhibition. Finally, static bottle and dynamic tube tests are performed to evaluate the possible side effects of EOR chemicals on scale inhibition; these observations are supported by characterization of precipitates using environmental scanning electron microscopy (ESEM) and X-ray diffraction (XRD). Depending on simulation, the peak polymer and surfactant concentrations at the separation plant are 83 and 40 ppm, respectively. The sensitivity study suggests a worst-case scenario in which peak polymer and surfactant concentrations of 174 and 128 ppm are produced. Compatibility testing confirms the compatibility of EOR chemicals with the additives used in upstream facilities. In those tests, neither precipitation nor phase separation is observed. Bottle tests indicate an overall negligible effect on oil/water-separation speed. However, analyses of separated-water quality indicated a noteworthy deterioration in separated-water qualities. Oil-in-water concentrations increase from 100 to 750 ppm and from 300 to 450 ppm at injection- and produced-water salinities, respectively. Furthermore, corrosion tests suggest that surfactant/polymer presence results in a significant reduction in corrosion rates by 70 and 86% at static and dynamic conditions, respectively, without any pitting issues. Finally, static and dynamic scale-inhibition studies performed at exacerbated conditions suggest that EOR chemicals can reduce the effectiveness of scale inhibitors. In static scaling tests, the effectiveness of the base polyacrylate inhibitor diminishes completely. However, the same degree of inhibition was achieved by switching to phosphonate inhibitors, but at a slightly higher dosage between 5 and 15 mg/L. In dynamic scaling tests, the base polyacrylate inhibitor failed at all tested dosages up to 100 mg/L. However, the alternative phosphonate inhibitors passed at dosages between 20 and 45 mg/L. Such effects can be attributed to changes in scale morphology and polymorphs, as demonstrated by the XRD and ESEM results. On the basis of those results, we conclude that the selected surfactant/polymer implementation will have a manageable effect on separation facilities. Finally, this work provides an experimental protocol to evaluate the potential side effects of a chemical-EOR process on upstream facilities.


2021 ◽  
Author(s):  
Abdelhak Ladmia ◽  
Dr. Younes bin Darak Al Blooshi ◽  
Abdullah Alobedli ◽  
Dragoljub Zivanov ◽  
Myrat Kuliyev ◽  
...  

Abstract The expected profiles of the water produced from the mature ADNOC fields in the coming years imply an important increase and the OPEX of the produced and injected water will increase considerably. This requires in-situ water separation and reinjection. The objective of in-situ fluid separation is to reduce the cost of handling produced water and to extend the well natural flow performance resulting in increased and accelerated production. The current practice of handling produced water is inexpensive in the short term, but it can affect the operating cost and the recovery in the long term as the expected water cut for the next 10-15 years is forecasted to incease significantly. A new water management tool called downhole separation technology was developed. It separates oil and & gas from associated water inside the wellbore to be reinjected back into the disposal wells. The Downhole Oil Water Separation (DHOWS) Technology is one of the key development strategies that can reduce considerable amounts of produced water, improve hydrocarbon recovery, and minimize field development cost by eliminating surface water treatment and handling costs. The main benefits of DHOWS include acceleration of oil offtake, reduction of production cost, lessening produced water volumes, and improved utilization of surface facilities. In effect, DHOWS technologies require specific design criteria to meet the objectives of the well. Therefore, multi--discipline input data are needed to install an effective DHOWS with a robust design that economically outperforms and boosts oil and/or gas productions. This paper describes the fundamental criteria and workflow for selecting the most suitable DHOWS design for new and sidetracked wells to deliver ADNOC production mandates in a cost-effective manner while meeting completion requirements and adhering to reservoir management guidelines.


2021 ◽  
Author(s):  
Dawood Al Mahrouqi ◽  
Hanaa Sulaimani ◽  
Rouhi Farajzadeh ◽  
Yi Svec ◽  
Samya Farsi ◽  
...  

Abstract In 2015-2016, the Alkaline-Surfactant-Polymer (ASP) flood Pilot in Marmul was successfully completed with ∼30% incremental oil recovery and no significant operational issues. In parallel to the ASP pilot, several laboratory studies were executed to identify an alternative and cost-efficient ASP formulation with simpler logistics. The studies resulted in a new formulation based on mono-ethanolamine (MEA) as alkali and a blend of commercially available and cheaper surfactants. To expediate the phased full field development, Phase-1 project was started in 2019 with the following main objectives are confirm high oil recovery efficiency of the new ASP formulation and ensure the scalability and further commercial maturation of ASP technology; de-risk the injectivity of new formulation; and de-risk oil-water separation in the presence of produced ASP chemicals. The Phase 1 project was executed in the same well pattern as the Pilot, but at a different reservoir unit that is more heterogeneous and has a smaller pore volume (PV) than those of the Pilot. This set-up allowed comparing the performance of ASP formulations and taking advantage of the existing surface facilities, thus reducing the project cost. The project was successfully finished in December 2020, and the following major conclusions were made: (1) with the estimated incremental recovery of around 15-18% and one of the producers exhibiting water cut reversal of more than 30%, the new ASP formulation is efficient and will be used in the follow-up phased commercial ASP projects; (2) the injectivity was sustained throughout the entire operations within the target rate and below the fracture pressure; (3) produced oil quality met the export requirements and a significant amount of oil-water separation data was collected. With confirmed high oil recovery efficiency for the cheaper and more convenient ASP formulation, the success of ASP flooding in the Phase-1 project paves the way for the subsequent commercial-scale ASP projects in the Sultanate of Oman.


2017 ◽  
Vol 8 (1) ◽  
pp. 111-122 ◽  
Author(s):  
Gen Huang ◽  
Hongxiang Xu ◽  
Lun Wu ◽  
Xiaobing Li ◽  
Yongtian Wang

Abstract A novel process ‘coalescence-airflotation-carrier preferential adsorption’ utilising an oil-water separation flotation column with a unique structure was used in the oil-water separation field. The oil-water separation flotation column contains the cyclonic separation and airflotation separation which has advantages in oily sewage treatment, especially in polymer-flooding-drive oily sewage treatment. In this paper, different dimensions of flotation column with 1 m3 d−1, 30 m3 d−1 and 2,000 m3 d−1 oil-water separation systems were investigated. In addition, several operating parameters which impact separation, such as feeding speed, aeration rate, circulating pressure, adsorbents consumption and frother consumption were also investigated. The optimum operating parameters determined for 1 m3 d−1 the oil-water separation flotation column were a feeding speed of 0.042 m3 h−1, an aeration rate of 0.10 m3 h−1, a coal consumption of 4 (g coal)·(g oil)−1, a frother consumption of 10 mg L−1, and a circulating pressure of 0.12 MPa. The novel process cost reduced 55.8% than conventional two-stage airflotation process. In the 2,000 m3 d−1 oil-water separation experiment, the oil concentration and the oil removal efficiency of outlet are 23.39 mgL−1, 97.70%, respectively. Sediment is not produced during the oily sewage treatment using the novel process and flotation column.


2014 ◽  
Vol 945-949 ◽  
pp. 3475-3478
Author(s):  
Bao Jun Liu ◽  
Jing Cheng Shi ◽  
Li Ping Guo ◽  
Yin Peng Li

Adopts the method of adding demulsifiers into the oily wastewater to increase the droplets size to further improve the efficiency of oil-water separation, and puts forward the corresponding optimized indicators and methods of demulsifiers. The optimized selection of the demulsifiers and its additive dosage was carried out by indoor experiments based on the optimized indicators. Using artificial produced water to test the treatment effect of the optimized demulsifier at different action time. The experiments show that demulsifier S1 with additive dosage of 20mg/l can accordance with the requirements of the processing very well, and as the increase of action time, the average size of droplets increase and the amount of the droplets which under 1μm decrease.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 395 ◽  
Author(s):  
Bin Huang ◽  
Xiaohui Li ◽  
Wei Zhang ◽  
Cheng Fu ◽  
Ying Wang ◽  
...  

The issue of pipeline scaling and oil-water separation caused by treating produced water in Alkali/Surfactant/Polymer (ASP) flooding greatly limits the wide use of ASP flooding technology. Therefore, this study of the demulsification-flocculation mechanism of oil-water emulsion in ASP flooding produced water is of great importance for ASP produced water treatment and its application. In this paper, the demulsification-flocculation mechanism of produced water is studied by simulating the changes in oil-water interfacial tension, Zeta potential and the size of oil droplets of produced water with an added demulsifier or flocculent by laboratory experiments. The results show that the demulsifier molecules can be adsorbed onto the oil droplets and replace the surfactant absorbed on the surface of oil droplets, reducing interfacial tension and weakening interfacial film strength, resulting in decreased stability of the oil droplets. The demulsifier can also neutralize the negative charge on the surface of oil droplets and reduce the electrostatic repulsion between them which will be beneficial for the accumulation of oil droplets. The flocculent after demulsification of oil droplets by charge neutralization, adsorption bridging, and sweeping all functions together. Thus, the oil droplets form aggregates and the synthetic action by the demulsifier and the flocculent causes the oil drop film to break up and oil droplet coalescence occurs to separate oil water.


RSC Advances ◽  
2020 ◽  
Vol 10 (26) ◽  
pp. 15124-15131 ◽  
Author(s):  
Hao Sun ◽  
Xin He ◽  
Qian Tang ◽  
Xiaobing Li

A recyclable functional microsphere was developed which significantly enhances oil–water separation and decreases chemical demulsifier consumption.


Sign in / Sign up

Export Citation Format

Share Document