scholarly journals Integrated Preventive Maintenance Scheduling Model with Redundancy for Cutting Tools on a Single Machine

2020 ◽  
Vol 10 (6) ◽  
pp. 6542-6548
Author(s):  
L. S. Tavassoli ◽  
N. Sakhavand ◽  
S. S. Fazeli

In this paper, we present an integrated multi-objective framework of a single machine for a single cutting tool problem. Our maintenance policy is based on performing minimal repairs in case of a minor failure and Preventive Maintenance (PM) to avoid a major failure that results in the replacement of the tool. This framework allows simultaneous optimization of the two conflicting time and cost objectives. A redundant system is proposed as a part of the model to assist the production line under a major failure. In addition, the tool’s preventive maintenance time is synchronized with the completion of the machine tool’s work cycle to reduce the machine’s set-up time. The model was optimized using a customized Non-dominated Sorting Genetic Algorithm (NSGA-II). An experimental study based on real-market data was conducted and the results were compared with the ones obtained from classical methods.

Author(s):  
Dongyan Chen ◽  
Yonghuan Cao ◽  
Kishor S. Trivedi ◽  
Yiguang Hong

Preventive maintenance is applied to improve the system availability or decrease the operational cost. This paper addresses the optimal preventive maintenance problem for multi-state deteriorating systems, where the system experiences multiple stages of performance degradation before it fails. We consider a general case where the inspection and repair time are generally distributed. The threshold type maintenance policy is employed for preventive minor maintenance and preventive major maintenance, where minor or major maintenance is carried out when the system deterioration stage is found to be larger than certain thresholds. The mathematical model of the system is set up by means of a Markov regenerative process (MRGP). With this formulation, the system steady-state probabilities under consideration are computed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abbas Al-Refaie ◽  
Hiba Almowas

PurposeThis research developed and examined a mathematical model for concurrent corrective and preventive maintenance policy of a system of series configuration.Design/methodology/approachA mathematical model was developed to maximize availability, and maximal net revenues, and minimal cost. Different probability distributions for time to failure and time to repair were considered. The model was then implemented on a real case study, which was studied under corrective maintenance policy and concurrent corrective and preventive policy.FindingsA comparison between results at current policy (90 days) and optimal period of corrective and preventive policy was conducted. It was found that availability, profit was increased from 94.4% and $20.091 – 96.5% and $24.803, respectively. Further, the cost was reduced from $1104.8 to $797.22.Research limitations/implicationsThe proposed optimization model can be adopted in planning maintenance activities for a single machine as well as for a system of series configuration machines under various probability distributions.Practical implicationsThe proposed model can significantly enhance performance of the production as well as maintenance systems. In addition, the developed model may support maintenance engineering in effective management of maintenance resources and the performance of its activities.Originality/valueThis research considers a mathematical model with multi-objective functions and distinct probability distributions for time-to-failure for a system of series machines. Moreover, appropriate approximation solution was deployed to find integral of some functions. Finally, it provides maintenance planning for a single machine or a series of machines.


2017 ◽  
pp. 44-54
Author(s):  
Zenaida Gonzaga ◽  
Warren Obeda ◽  
Ana Linda Gorme ◽  
Jessie Rom ◽  
Oscar Abrantes ◽  
...  

Okra or Lady’s finger, botanically known as Abelmoschus esculentus (L.) Moench, is a tropical and sub-tropical indigenous vegetable crop commonly grown for its fibrous, slimy, and nutritious fruits and consumed by all classes of population. It has also several medicinal and economic values. Despite its many uses and potential value, its importance is under estimated, under-utilized, and considered a minor crop and little attention was paid to its improvement. The study was conducted to evaluate the effects of different planting densities and mulching materials on the growth and yield of okra grown in slightly sloping area in the marginal uplands in Sta. Rita, Samar, Philippines. A split-plot experiment was set up with planting density as main plot and the different mulching materials as the sub-plot which were: unmulched or bare soil, rice straw, rice hull, hagonoy and plastic mulch. Planting density did not significantly affect the growth and yield of okra. Regardless ofthe mulching materials used, mulched plants were taller and yielded higher compared to unmulched plants. Moreover, the use of plastic mulch resulted to the highest total fruit yield. The results indicate the potential of mulching in increasing yield and thus profitability of okra production under marginal upland conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin-Woong Lee ◽  
Chaewon Park ◽  
Byung Do Lee ◽  
Joonseo Park ◽  
Nam Hoon Goo ◽  
...  

AbstractPredicting mechanical properties such as yield strength (YS) and ultimate tensile strength (UTS) is an intricate undertaking in practice, notwithstanding a plethora of well-established theoretical and empirical models. A data-driven approach should be a fundamental exercise when making YS/UTS predictions. For this study, we collected 16 descriptors (attributes) that implicate the compositional and processing information and the corresponding YS/UTS values for 5473 thermo-mechanically controlled processed (TMCP) steel alloys. We set up an integrated machine-learning (ML) platform consisting of 16 ML algorithms to predict the YS/UTS based on the descriptors. The integrated ML platform involved regularization-based linear regression algorithms, ensemble ML algorithms, and some non-linear ML algorithms. Despite the dirty nature of most real-world industry data, we obtained acceptable holdout dataset test results such as R2 > 0.6 and MSE < 0.01 for seven non-linear ML algorithms. The seven fully trained non-linear ML models were used for the ensuing ‘inverse design (prediction)’ based on an elitist-reinforced, non-dominated sorting genetic algorithm (NSGA-II). The NSGA-II enabled us to predict solutions that exhibit desirable YS/UTS values for each ML algorithm. In addition, the NSGA-II-driven solutions in the 16-dimensional input feature space were visualized using holographic research strategy (HRS) in order to systematically compare and analyze the inverse-predicted solutions for each ML algorithm.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2207
Author(s):  
Michele Pazzola ◽  
Giuseppe Massimo Vacca ◽  
Pietro Paschino ◽  
Giovanni Bittante ◽  
Maria Luisa Dettori

The aim of the present research was to analyze the variability of 45 SNPs from different genes involved in metabolism and innate immunity to perform an association analysis with the milk yield, composition and milk coagulation traits. A population of 1112 Sarda breed sheep was sampled. Genotyping was generated by a TaqMan Open ArrayTM. Thirty out of the 45 SNPs were polymorphic, and 12 displayed a minor allele frequency higher than 0.05. An association analysis showed that the variability at genes PRKAG3 and CD14 was significantly associated with the daily milk yield. The variability at PRKAG3 was also associated with the protein and casein content, somatic cell score and bacterial score. The variation at the PRKAA2 gene was associated with the milk lactose concentration. The SNPs at CD14 were also associated with the traditional milk coagulation properties, while the SNPs at GHR and GHRHR were associated with kSR, a derived coagulation parameter related to the rate of syneresis. The information provided here is new and increases our knowledge of genotype–phenotype interactions in sheep. Our findings might be useful in appropriate breeding schemes to be set up for the Sarda sheep breed, but these should be confirmed by further studies, possibly performed on independent populations.


Sign in / Sign up

Export Citation Format

Share Document