scholarly journals Modified superstructure fiber Bragg grating for a filter application

2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Ayser A. Hemed ◽  
◽  
Mayyada M. Fdhala ◽  
Suha M. Khorsheed ◽  
◽  
...  

Performance of a modified superstructure fiber Bragg grating is carried out by; simulation using a Matlab and then by optisystem7. Results for these two simulations are compared with an experimental investigation for three special FBGs in addition to a standard one. These four FBGs have one, two, three, and four regions. For each region, Bragg wavelength is increased around 6nm, with constant spacing between every two regions. Laser reflectance (R) and transmittance (T) spectra and their corresponding number of peaks and their bandwidths are observed and analyzed in a constant temperature and strain. Results for this investigation indicate enhancement for the modified FBG to be an effective filter that can be employed for communication as well as sense. Filtering the transmitted signals could be satisfied in a simple and more efficiency than the traditional device.

2014 ◽  
Vol 68 (3) ◽  
Author(s):  
Siti Musliha Aishah Musa ◽  
RK Raja Ibrahim ◽  
Asrul Izam Azmi

This paper presents early work on Fiber Bragg grating (FBG) as temperature sensor to monitor temperature variation inside a packed-bed non-thermal plasma reactor. FBG made from germania-doped fiber with center Bragg wavelength of 1552.5 nm was embedded inside non-thermal plasma reactor with sphere shape dielectric bead (barium titanate) and used to probe the temperature variation inside the reactor. The experimental works have proven that FBG is a suitable sensor to monitor temperature variation inside of reactor via LabVIEW program. Besides that, Optical Spectrum Analyzer (OSA) recorded Bragg wavelength shift as voltage of power supply increases, which indicate the non-uniform temperature variation occurring inside the reactor. However, it does not affect the chemical reaction inside the reactor because the temperature condition is in steady state.


2020 ◽  
Vol 18 (12) ◽  
pp. 889-893
Author(s):  
Kalyan Biswas

In this work, a simple but versatile sensing system for very accurate sensing of liquid level and liquid density is presented. The sensor works based on basic strain sensitivity of Fiber Bragg Grating (FBG) and principle of liquid obeying Archimedes’ law of buoyancy. In this system, a cylindrical shaped mass suspended from a Fiber Bragg Grating and partially immersed in the liquid to be sensed. If the liquid level in the container or liquid density varies, that change the up thrust on the suspended mass and load on the Fiber will be changed accordingly. The change in the load on Fiber changes strain on the FBG and the reflected Bragg wavelength also changes. The proposed device with proper calibration should be able to carry out real time and nonstop liquid level and liquid density measurements. A mathematical analysis of the system considering liquid properties and geometrical structure of the suspended mass is presented here. Sensitivity of the system for liquid level monitoring is also reported. Achieved results shows the path for the utilization of the proposed sensor system for precise liquid density measurement and liquid level sensing in very large storage tanks used for commercial/residential applications.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4298 ◽  
Author(s):  
Aliya Bekmurzayeva ◽  
Kanat Dukenbayev ◽  
Madina Shaimerdenova ◽  
Ildar Bekniyazov ◽  
Takhmina Ayupova ◽  
...  

A biosensor based on an etched Fiber Bragg Grating (EFBG) for thrombin detection is reported. The sensing system is based on a Fiber Bragg Grating (FBG) with a Bragg wavelength of 1550 nm, wet-etched in hydrofluoric acid (HF) for ~27 min, to achieve sensitivity to a refractive index (RI) of 17.4 nm/RIU (refractive index unit). Subsequently, in order to perform a selective detection of thrombin, the EFBG has been functionalized with silane-coupling agent 3-(aminopropyl)triethoxysilane (APTES) and a cross-linker, glutaraldehyde, for the immobilization of thrombin-binding aptamer. The biosensor has been validated for thrombin detection in concentrations ranging from 10 nM to 80 nM. The proposed sensor presents advantages with respect to other sensor configurations, based on plasmonic resonant tilted FBG or Long Period Grating (LPG), for thrombin detection. Firstly, fabricating an EFBG only requires chemical etching. Moreover, the functionalization method used in this study (silanization) allows the avoidance of complicated and expensive fabrications, such as thin film sputtering or chemical vapor deposition. Due to their characteristics, EFBG sensors are easier to multiplex and can be used in vivo. This opens new possibilities for the detection of thrombin in clinical settings.


2013 ◽  
Vol 823 ◽  
pp. 513-516
Author(s):  
Xin Wang ◽  
Jun Lin Wang

The large power current is sampled by Rogowski coil, then transforms the sampling signals from AC to DC and regulates the signals, the current detection unit is formed with FBG (Fiber Bragg Grating) and GMM (Giant Magnetostrictive Material), the current measurement is achieved based on the F-P interferometer filter demodulation system, finally, linear relationship between the Bragg wavelength shift and external current is validated by experiment.


Author(s):  
A. Morana ◽  
E. Marin ◽  
S. Girard ◽  
C. Marcandella ◽  
J. Périsse ◽  
...  

2010 ◽  
Vol 437 ◽  
pp. 359-363
Author(s):  
Hong Li ◽  
Wei Ping Yan ◽  
Ren Sheng Shen ◽  
Ben Yu Wang

Optical spectrum analyzer (OSA) can achieve the higher precision and sensitivity, but it is disadvantageous for translating optical signal into electrical signal. A fiber Bragg grating (FBG) matched filtering system based on equi-intensity cantilever beam was presented in this paper. Strain characteristics in different location of cantilever beam were described, and the strain sensitivity of matching grating demodulation based on equi-intensity cantilever beam was deduced mathematically. Strain characteristics of cantilever beam were verified, and the sensing effect of the system was tested. The Bragg wavelength shift range of the demodulating FBG placed on the cantilever beam reached 10 nm, and scanning velocity was 0.125 nm/s. The system could demodulate slow-altered sensing signal accurately and rapidly.


2009 ◽  
Author(s):  
Harpreet K. Bal ◽  
Fotios Sidiroglou ◽  
Sui P. Yam ◽  
Zourab Brodzeli ◽  
Scott A. Wade ◽  
...  

2002 ◽  
Vol 202 (1-3) ◽  
pp. 91-95 ◽  
Author(s):  
Xinyong Dong ◽  
Bai-Ou Guan ◽  
Shuzhong Yuan ◽  
Xiaoyi Dong ◽  
Hwa-Yaw Tam

Sign in / Sign up

Export Citation Format

Share Document