scholarly journals To Study Microbial Fuel Cell with its Recent Developments

Author(s):  
Jyoti Sangle ◽  
Anshuli Warde ◽  
Shakshi Mehta ◽  
Srushti Alesa

Microbial Fuel Cells (MFCs) are the special devices which are been used to produce electricity by anaerobic fermentation of organic as well as inorganic matter from easily metabolized biomass to complex wastewater using microbes as biocatalysts. Microbial Fuel Cell (MFC) is a bio-electrochemical catalytic activity of microbes to produce electricity from the oxidation of organic, substrates under natural condition. There is an increasing interest in photosynthetic MFCs designed to harness Earth's most abundant and promising energy source. Despite their MFCs havent yet successfully translated into commercial applications because they demonstrate persistent performance limitations and bottlenecks associated with scaling up. micro scale MFCs have received attention as a singular platform for various applications like powering small portable electronic elements in remote locations, fundamental studies of microorganisms, screening bacterial strains, toxicity detection in water. MFC is a great technology which can be used in the Modern World for generation of electricity and concomitant wastewater treatmentt.

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Fatin Syahirah Fadzli ◽  
Showkat Ahmad Bhawani ◽  
Rania Edrees Adam Mohammad

A new bioelectrochemical approach based on metabolic activities inoculated bacteria, and the microbial fuel cell (MFC) acts as biocatalysts for the natural conversion to energy of organic substrates. Among several factors, the organic substrate is the most critical challenge in MFC, which requires long-term stability. The utilization of unstable organic substrate directly affects the MFC performance, such as low energy generation. Similarly, the interaction and effect of the electrode with organic substrate are well discussed. The electrode-bacterial interaction is also another aspect after organic substrate in order to ensure the MFC performance. The conclusion is based on this literature view; the electrode content is also a significant challenge for MFCs with organic substrates in realistic applications. The current review discusses several commercial aspects of MFCs and their potential prospects. A durable organic substrate with an efficient electron transfer medium (anode electrode) is the modern necessity for this approach.


2007 ◽  
Vol 73 (16) ◽  
pp. 5347-5353 ◽  
Author(s):  
Hanno Richter ◽  
Martin Lanthier ◽  
Kelly P. Nevin ◽  
Derek R. Lovley

ABSTRACT The ability of Pelobacter carbinolicus to oxidize electron donors with electron transfer to the anodes of microbial fuel cells was evaluated because microorganisms closely related to Pelobacter species are generally abundant on the anodes of microbial fuel cells harvesting electricity from aquatic sediments. P. carbinolicus could not produce current in a microbial fuel cell with electron donors which support Fe(III) oxide reduction by this organism. Current was produced using a coculture of P. carbinolicus and Geobacter sulfurreducens with ethanol as the fuel. Ethanol consumption was associated with the transitory accumulation of acetate and hydrogen. G. sulfurreducens alone could not metabolize ethanol, suggesting that P. carbinolicus grew in the fuel cell by converting ethanol to hydrogen and acetate, which G. sulfurreducens oxidized with electron transfer to the anode. Up to 83% of the electrons available in ethanol were recovered as electricity and in the metabolic intermediate acetate. Hydrogen consumption by G. sulfurreducens was important for ethanol metabolism by P. carbinolicus. Confocal microscopy and analysis of 16S rRNA genes revealed that half of the cells growing on the anode surface were P. carbinolicus, but there was a nearly equal number of planktonic cells of P. carbinolicus. In contrast, G. sulfurreducens was primarily attached to the anode. P. carbinolicus represents the first Fe(III) oxide-reducing microorganism found to be unable to produce current in a microbial fuel cell, providing the first suggestion that the mechanisms for extracellular electron transfer to Fe(III) oxides and fuel cell anodes may be different.


RSC Advances ◽  
2017 ◽  
Vol 7 (21) ◽  
pp. 12503-12510 ◽  
Author(s):  
Xiufen Li ◽  
Yan Zheng ◽  
Pengfei Nie ◽  
Yueping Ren ◽  
Xinhua Wang ◽  
...  

In recent years, microbial fuel cell (MFC) technology has become an attractive option for metal recovery/removal at the cathode combined with electricity generation, using organic substrates as electron donor at the anode.


RSC Advances ◽  
2017 ◽  
Vol 7 (27) ◽  
pp. 16542-16552 ◽  
Author(s):  
Zhou Fang ◽  
Sichao Cheng ◽  
Hui Wang ◽  
Xian Cao ◽  
Xianning Li

Microbial fuel cells (MFCs) were embedded into constructed wetlands to form microbial fuel cell coupled constructed wetlands (CW-MFCs) and were used for simultaneous azo dye wastewater treatment and bioelectricity generation.


RSC Advances ◽  
2018 ◽  
Vol 8 (70) ◽  
pp. 40490-40497 ◽  
Author(s):  
Lizhen Zeng ◽  
Shaofei Zhao ◽  
Lixia Zhang ◽  
Miao He

A novel macroscale porous structure electrode, molybdenum carbide nanoparticles-modified carbonized cotton textile (Mo2C/CCT), was synthesized by a facile two-step method and used as anode material for high-performance microbial fuel cell (MFC).


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1383 ◽  
Author(s):  
Liping Fan ◽  
Junyi Shi ◽  
Tian Gao

Proton exchange membrane is an important factor affecting the power generation capacity and water purification effect of microbial fuel cells. The performance of microbial fuel cells can be improved by modifying the proton exchange membrane by some suitable method. Microbial fuel cells with membranes modified by SiO2/PVDF (polyvinylidene difluoride), sulfonated PVDF and polymerized MMA (methyl methacrylate) electrolyte were tested and their power generation capacity and water purification effect were compared. The experimental results show that the three membrane modification methods can improve the power generation capacity and water purification effect of microbial fuel cells to some extent. Among them, the microbial fuel cell with the polymerized MMA modified membrane showed the best performance, in which the output voltage was 39.52 mV, and the electricity production current density was 18.82 mA/m2, which was 2224% higher than that of microbial fuel cell with the conventional Nafion membrane; and the COD (chemical oxygen demand) removal rate was 54.8%, which was 72.9% higher than that of microbial fuel cell with the conventional Nafion membrane. Modifying the membrane with the polymerized MMA is a very effective way to improve the performance of microbial fuel cells.


2018 ◽  
Vol 8 (12) ◽  
pp. 2384 ◽  
Author(s):  
Gene Drendel ◽  
Elizabeth R. Mathews ◽  
Lucie Semenec ◽  
Ashley E. Franks

Microbial fuel cells present an emerging technology for utilizing the metabolism of microbes to fuel processes including biofuel, energy production, and the bioremediation of environments. The application and design of microbial fuel cells are of interest to a range of disciplines including engineering, material sciences, and microbiology. In addition, these devices present numerous opportunities to improve sustainable practices in different settings, ranging from industrial to domestic. Current research is continuing to further our understanding of how the engineering, design, and microbial aspects of microbial fuel cell systems impact upon their function. As a result, researchers are continuing to expand the range of processes microbial fuel cells can be used for, as well as the efficiency of those applications.


RSC Advances ◽  
2016 ◽  
Vol 6 (73) ◽  
pp. 68827-68834 ◽  
Author(s):  
Praveena Gangadharan ◽  
Indumathi M. Nambi ◽  
Jaganathan Senthilnathan ◽  
Pavithra V. M.

In the present study, a low molecular heterocyclic aminopyrazine (Apy)–reduced graphene oxide (r-GO) hybrid coated carbon cloth (r-GO–Apy–CC) was employed as an active and stable bio-electro catalyst in a microbial fuel cell (MFC).


2008 ◽  
Vol 8 (8) ◽  
pp. 4132-4134 ◽  
Author(s):  
Tushar Sharma ◽  
A. Leela Mohana Reddy ◽  
T. S. Chandra ◽  
S. Ramaprabhu

Microbial Fuel Cells (MFC) are robust devices capable of taping biological energy, converting sugars into potential sources of energy. Persistent efforts are directed towards increasing power output. However, they have not been researched to the extent of making them competitive with chemical fuel cells. The power generated in a dual-chamber MFC using neutral red (NR) as the electron mediator has been previously shown to be 152.4 mW/m2 at 412.5 mA/m2 of current density. In the present work we show that Pt thin film coated carbon paper as electrodes increase the performance of a microbial fuel cell compared to conventionally employed electrodes. The results obtained using E. coli based microbial fuel cell with methylene blue and neutral red as the electron mediator, potassium ferricyanide in the cathode compartment were systematically studied and the results obtained with Pt thin film coated over carbon paper as electrodes were compared with that of graphite electrodes. Platinum coated carbon electrodes were found to be better over the previously used for microbial fuel cells and at the same time are cheaper than the preferred pure platinum electrodes.


Sign in / Sign up

Export Citation Format

Share Document