scholarly journals Investigation of a Class of Implicit Anti-Periodic Boundary Value Problems

2021 ◽  
Vol 2 (1) ◽  
pp. 47-61
Author(s):  
Laila Hashtamand

This research is devoted to studying a class of implicit fractional order differential equations ($\mathrm{FODEs}$) under anti-periodic boundary conditions ($\mathrm{APBCs}$). With the help of classical fixed point theory due to $\mathrm{Schauder}$ and $\mathrm{Banach}$, we derive some adequate results about the existence of at least one solution. Moreover, this manuscript discusses the concept of stability results including Ulam-Hyers (HU) stability, generalized Hyers-Ulam (GHU) stability, Hyers-Ulam Rassias (HUR) stability, and generalized Hyers-Ulam- Rassias (GHUR)stability. Finally, we give three examples to illustrate our results.

Fractals ◽  
2021 ◽  
pp. 2240002
Author(s):  
BASHIR AHMAD ◽  
BADRAH ALGHAMDI ◽  
RAVI P. AGARWAL ◽  
AHMED ALSAEDI

In this paper, we investigate the existence and uniqueness of solutions for Riemann–Liouville fractional integro-differential equations equipped with fractional nonlocal multi-point and strip boundary conditions in the weighted space. The methods of our study include the well-known tools of the fixed point theory, which are commonly applied to establish the existence theory for the initial and boundary value problems after converting them into the fixed point problems. We also discuss the case when the nonlinearity depends on the Riemann–Liouville fractional integrals of the unknown function. Numerical examples illustrating the main results are presented.


2021 ◽  
Vol 6 (11) ◽  
pp. 12894-12901
Author(s):  
El-sayed El-hady ◽  
◽  
Abdellatif Ben Makhlouf

<abstract><p>We present Ulam-Hyers-Rassias (UHR) stability results for the Darboux problem of partial differential equations (DPPDEs). We employ some fixed point theorem (FPT) as the main tool in the analysis. In this manner, our results are considered as some generalized version of several earlier outcomes.</p></abstract>


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Hongxia Fan ◽  
Yongxiang Li

By means of the fixed point theory of strict set contraction operators, we establish a new existence theorem on multiple positive solutions to a singular boundary value problem for second-order impulsive differential equations with periodic boundary conditions in a Banach space. Moreover, an application is given to illustrate the main result.


Filomat ◽  
2018 ◽  
Vol 32 (2) ◽  
pp. 439-455 ◽  
Author(s):  
A. Vinodkumar ◽  
P. Indhumathi

In this paper, we discuss the global existence, uniqueness, continuous dependence and exponential stability of random impulsive partial integro-differential equations is investigated. The results are obtained by using the Leray-Schauder alternative fixed point theory and Banach Contraction Principle. Finally we give an example to illustrate our abstract results.


2020 ◽  
Vol 6 (2) ◽  
pp. 218-230
Author(s):  
Fouzia Bekada ◽  
Saïd Abbas ◽  
Mouffak Benchohra

AbstractThis article deals with some existence of random solutions and Ulam stability results for a class of Caputo-Fabrizio random fractional differential equations with boundary conditions in Banach spaces. Our results are based on the fixed point theory and random operators. Two illustrative examples are presented in the last section.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1774 ◽  
Author(s):  
Ahmed Alsaedi ◽  
Ravi P. Agarwal ◽  
Sotiris K. Ntouyas ◽  
Bashir Ahmad

This paper studies a new class of fractional differential inclusions involving two Caputo fractional derivatives of different orders and a Riemann–Liouville type integral nonlinearity, supplemented with a combination of fixed and nonlocal (dual) anti-periodic boundary conditions. The existence results for the given problem are obtained for convex and non-convex cases of the multi-valued map by applying the standard tools of the fixed point theory. Examples illustrating the obtained results are presented.


Filomat ◽  
2014 ◽  
Vol 28 (10) ◽  
pp. 2149-2162 ◽  
Author(s):  
Bashir Ahmad ◽  
Sotiris Ntouyas ◽  
Hamed Alsulami

In this paper, a class of boundary value problems of nonlinear nth-order differential equations and inclusions with nonlocal and integral boundary conditions is studied. New existence results are obtained by means of some fixed point theorems. Examples are given for the illustration of the results.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Ruyun Ma ◽  
Yanqiong Lu ◽  
Tianlan Chen

We prove the existence of one-signed periodic solutions of second-order nonlinear difference equation on a finite discrete segment with periodic boundary conditions by combining some properties of Green's function with the fixed-point theorem in cones.


Sign in / Sign up

Export Citation Format

Share Document