scholarly journals Orbitally discrete coarse spaces

2021 ◽  
Vol 22 (2) ◽  
pp. 303
Author(s):  
Igor V. Protasov

<p>Given a coarse space (X, E), we endow X with the discrete topology and denote X ♯ = {p ∈ βG : each member P ∈ p is unbounded }. For p, q ∈ X ♯ , p||q means that there exists an entourage E ∈ E such that E[P] ∈ q for each P ∈ p. We say that (X, E) is orbitally discrete if, for every p ∈ X ♯ , the orbit p = {q ∈ X ♯ : p||q} is discrete in βG. We prove that every orbitally discrete space is almost finitary and scattered.</p>

2020 ◽  
Vol 70 (6) ◽  
pp. 1413-1444
Author(s):  
Elisa Hartmann

AbstractTo a coarse structure we associate a Grothendieck topology which is determined by coarse covers. A coarse map between coarse spaces gives rise to a morphism of Grothendieck topologies. This way we define sheaves and sheaf cohomology on coarse spaces. We obtain that sheaf cohomology is a functor on the coarse category: if two coarse maps are close they induce the same map in cohomology. There is a coarse version of a Mayer-Vietoris sequence and for every inclusion of coarse spaces there is a coarse version of relative cohomology. Cohomology with constant coefficients can be computed using the number of ends of a coarse space.


Author(s):  
Leonid Petrov ◽  
Axel Saenz

AbstractWe obtain a new relation between the distributions $$\upmu _t$$ μ t at different times $$t\ge 0$$ t ≥ 0 of the continuous-time totally asymmetric simple exclusion process (TASEP) started from the step initial configuration. Namely, we present a continuous-time Markov process with local interactions and particle-dependent rates which maps the TASEP distributions $$\upmu _t$$ μ t backwards in time. Under the backwards process, particles jump to the left, and the dynamics can be viewed as a version of the discrete-space Hammersley process. Combined with the forward TASEP evolution, this leads to a stationary Markov dynamics preserving $$\upmu _t$$ μ t which in turn brings new identities for expectations with respect to $$\upmu _t$$ μ t . The construction of the backwards dynamics is based on Markov maps interchanging parameters of Schur processes, and is motivated by bijectivizations of the Yang–Baxter equation. We also present a number of corollaries, extensions, and open questions arising from our constructions.


2021 ◽  
Vol 26 (2) ◽  
pp. 44
Author(s):  
Eric Chung ◽  
Hyea-Hyun Kim ◽  
Ming-Fai Lam ◽  
Lina Zhao

In this paper, we consider the balancing domain decomposition by constraints (BDDC) algorithm with adaptive coarse spaces for a class of stochastic elliptic problems. The key ingredient in the construction of the coarse space is the solutions of local spectral problems, which depend on the coefficient of the PDE. This poses a significant challenge for stochastic coefficients as it is computationally expensive to solve the local spectral problems for every realization of the coefficient. To tackle this computational burden, we propose a machine learning approach. Our method is based on the use of a deep neural network (DNN) to approximate the relation between the stochastic coefficients and the coarse spaces. For the input of the DNN, we apply the Karhunen–Loève expansion and use the first few dominant terms in the expansion. The output of the DNN is the resulting coarse space, which is then applied with the standard adaptive BDDC algorithm. We will present some numerical results with oscillatory and high contrast coefficients to show the efficiency and robustness of the proposed scheme.


Acta Numerica ◽  
2017 ◽  
Vol 26 ◽  
pp. 591-721 ◽  
Author(s):  
Jinchao Xu ◽  
Ludmil Zikatanov

This paper provides an overview of AMG methods for solving large-scale systems of equations, such as those from discretizations of partial differential equations. AMG is often understood as the acronym of ‘algebraic multigrid’, but it can also be understood as ‘abstract multigrid’. Indeed, we demonstrate in this paper how and why an algebraic multigrid method can be better understood at a more abstract level. In the literature, there are many different algebraic multigrid methods that have been developed from different perspectives. In this paper we try to develop a unified framework and theory that can be used to derive and analyse different algebraic multigrid methods in a coherent manner. Given a smoother$R$for a matrix$A$, such as Gauss–Seidel or Jacobi, we prove that the optimal coarse space of dimension$n_{c}$is the span of the eigenvectors corresponding to the first$n_{c}$eigenvectors$\bar{R}A$(with$\bar{R}=R+R^{T}-R^{T}AR$). We also prove that this optimal coarse space can be obtained via a constrained trace-minimization problem for a matrix associated with$\bar{R}A$, and demonstrate that coarse spaces of most existing AMG methods can be viewed as approximate solutions of this trace-minimization problem. Furthermore, we provide a general approach to the construction of quasi-optimal coarse spaces, and we prove that under appropriate assumptions the resulting two-level AMG method for the underlying linear system converges uniformly with respect to the size of the problem, the coefficient variation and the anisotropy. Our theory applies to most existing multigrid methods, including the standard geometric multigrid method, classical AMG, energy-minimization AMG, unsmoothed and smoothed aggregation AMG and spectral AMGe.


1993 ◽  
Vol 36 (1) ◽  
pp. 49-54 ◽  
Author(s):  
John Baker ◽  
Neil Hindman ◽  
John Pym

Let S be a free semigroup (on any set of generators). When S is given the discrete topology, its Stone-Čech compactification has a natural semigroup structure. We give two results about elements p of finite order in βS. The first is that any continuous homomorphism of βS into any compact group must send p to the identity. The second shows that natural extensions, to elements of finite order, of relationships between idempotents and sequences with distinct finite sums, do not hold.


Sign in / Sign up

Export Citation Format

Share Document