High performance photonic devices for switching applications in silicon photonics

Author(s):  
Luis David Sánchez Diana
PhotoniX ◽  
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Chenlei Li ◽  
Ming Zhang ◽  
Hongnan Xu ◽  
Ying Tan ◽  
Yaocheng Shi ◽  
...  

AbstractOn-chip mode-manipulation is one of the most important physical fundamentals for many photonic integrated devices and circuits. In the past years, great progresses have been achieved on subwavelength silicon photonics for on-chip mode-manipulation by introducing special subwavelength photonic waveguides. Among them, there are two popular waveguide structures available. One is silicon hybrid plasmonic waveguides (HPWGs) and the other one is silicon subwavelength-structured waveguides (SSWGs). In this paper, we focus on subwavelength silicon photonic devices and the applications with the manipulation of the effective indices, the modal field profiles, the mode dispersion, as well as the birefringence. First, a review is given about subwavelength silicon photonics for the fundamental-mode manipulation, including high-performance polarization-handling devices, efficient mode converters for chip-fiber edge-coupling, and ultra-broadband power splitters. Second, a review is given about subwavelength silicon photonics for the higher-order-mode manipulation, including multimode converters, multimode waveguide bends, and multimode waveguide crossing. Finally, some emerging applications of subwavelength silicon photonics for on-chip mode-manipulation are discussed.


2021 ◽  
Vol 12 (1) ◽  
pp. 313
Author(s):  
Siqi Yan ◽  
Jeremy Adcock ◽  
Yunhong Ding

Graphene—a two-dimensional allotrope of carbon in a single-layer honeycomb lattice nanostructure—has several distinctive optoelectronic properties that are highly desirable in advanced optical communication systems. Meanwhile, silicon photonics is a promising solution for the next-generation integrated photonics, owing to its low cost, low propagation loss and compatibility with CMOS fabrication processes. Unfortunately, silicon’s photodetection responsivity and operation bandwidth are intrinsically limited by its material characteristics. Graphene, with its extraordinary optoelectronic properties has been widely applied in silicon photonics to break this performance bottleneck, with significant progress reported. In this review, we focus on the application of graphene in high-performance silicon photonic devices, including modulators and photodetectors. Moreover, we explore the trend of development and discuss the future challenges of silicon-graphene hybrid photonic devices.


Nanophotonics ◽  
2014 ◽  
Vol 3 (4-5) ◽  
pp. 215-228 ◽  
Author(s):  
Po Dong ◽  
Young-Kai Chen ◽  
Guang-Hua Duan ◽  
David T. Neilson

AbstractSilicon photonic devices and integrated circuits have undergone rapid and significant progresses during the last decade, transitioning from research topics in universities to product development in corporations. Silicon photonics is anticipated to be a disruptive optical technology for data communications, with applications such as intra-chip interconnects, short-reach communications in datacenters and supercomputers, and long-haul optical transmissions. Bell Labs, as the research organization of Alcatel-Lucent, a network system vendor, has an optimal position to identify the full potential of silicon photonics both in the applications and in its technical merits. Additionally it has demonstrated novel and improved high-performance optical devices, and implemented multi-function photonic integrated circuits to fulfill various communication applications. In this paper, we review our silicon photonic programs and main achievements during recent years. For devices, we review high-performance single-drive push-pull silicon Mach-Zehnder modulators, hybrid silicon/III-V lasers and silicon nitride-assisted polarization rotators. For photonic circuits, we review silicon/silicon nitride integration platforms to implement wavelength-division multiplexing receivers and transmitters. In addition, we show silicon photonic circuits are well suited for dual-polarization optical coherent transmitters and receivers, geared for advanced modulation formats. We also discuss various applications in the field of communication which may benefit from implementation in silicon photonics.


2021 ◽  
Author(s):  
David Moss

<p>As a novel layered noble metal dichalcogenide material, palladium diselenide (PdSe<sub>2</sub>) has attracted wide interest due to its excellent optical and electronic properties. In this work, a strong third-order nonlinear optical response of 2D PdSe<sub>2</sub> films is reported. We conduct both open-aperture (OA) and closed-aperture (CA) Z-scan measurements with a femtosecond pulsed laser at 800 nm to investigate the nonlinear absorption and nonlinear refraction, respectively. In the OA experiment, we observe optical limiting behaviour originating from large two photo absorption (TPA) in the PdSe<sub>2</sub> film of <i>β =</i> 3.26 ×10<sup>-8</sup> m/W. In the CA experiment, we measure a peak-valley response corresponding to a large and negative Kerr nonlinearity of <i>n</i><sub>2</sub> = -1.33×10<sup>-15</sup> m<sup>2</sup>/W – two orders of magnitude larger than bulk silicon. In addition, the variation of <i>n</i><sub>2</sub> as a function of laser intensity is also characterized, with <i>n</i><sub>2</sub> decreasing in magnitude when increasing incident laser intensity, becoming saturated at <i>n</i><sub>2</sub> = -9.96×10<sup>-16</sup> m<sup>2</sup>/W at high intensities. Our results show that the extraordinary third-order nonlinear optical properties of PdSe<sub>2</sub> have strong potential for high-performance nonlinear photonic devices.</p>


Author(s):  
Ruggero Loi ◽  
James O'Callaghan ◽  
Brendan Roycroft ◽  
Antonio Jose Trindade ◽  
Alin Fecioru ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document