Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from oak sawdust

2010 ◽  
Vol 20 (1-3) ◽  
pp. 102-113 ◽  
Author(s):  
Mona Mahmoud Abd El-Latifa ◽  
Amal Mozarei Ibrahim
Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3481
Author(s):  
Joanna Lach ◽  
Agnieszka Ociepa-Kubicka ◽  
Maciej Mrowiec

The aim of the work was to evaluate the possibility of using commercial and modified activated carbons for the removal of oxytetracycline from aqueous solutions. The kinetics and statics of adsorption as well as the effect of the activated carbon dose and solution pH on the efficiency of the oxytetracycline adsorption were analyzed. Based on the study of oxytetracycline adsorption isotherms, the activated carbons were ranked in the following order: F-300 > WG-12 > Picabiol > ROW08 > WACC 8 × 30 > F-100 > WAZ 0.6–2.4. The most effective activated carbons were characterized by large specific surfaces. The best matching results were obtained for: Redlich–Peterson, Thot and Jovanovic models, and lower for the most frequently used Freundlich and Langmuir models. The adsorption proceeded better from solutions with pH = 6 than with pH = 3 and 10. Two ways of modifying activated carbon were also assessed. A proprietary method of activated carbon modification was proposed. It uses the heating of activated carbon as a result of current flow through its bed. Both carbons modified at 400 °C in the rotary kiln and on the proprietary SEOW (Joule-heat) modification stand enabled to obtain adsorbents with higher and comparable monolayer capacities. The advantage of the proposed modification method is low electricity consumption.


2017 ◽  
Vol 243 ◽  
pp. 799-809 ◽  
Author(s):  
Mounir Daoud ◽  
Oumessaâd Benturki ◽  
Zoubida Kecira ◽  
Pierre Girods ◽  
André Donnot

2019 ◽  
Vol 25 (4) ◽  
pp. 341-351
Author(s):  
Aleksandar Zdravkovic ◽  
Novica Stankovic ◽  
Nebojsa Ristic ◽  
Goran Petkovic

The aim of this study was to determine adsorptive properties of acid activated bentonite clay for the removal of Direct Red 173 (DR 173) and Reactive Red 22 (RR 22) dyes from aqueous solutions. Raw and modified clay were characterized by the following methods: Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRPD), and scanning electron microscopy (SEM). The efficiency of activated clay adsorption was investigated depending on process parameters: the adsorbent dose, pH, temperature, initial dye concentration, and contact time. Experimental data were analyzed by Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm as well as kinetic models of pseudo-first order, pseudo-second order and intra-particle diffusion. The process of dye adsorption was best described by Langmuir, Temkin, and Dubinin-Radushkevich isotherm (R2 > 0.97). Pseudo-second order model (R2 > 0.99) had the highest correlation with the obtained kinetic results. The positive value of ?H? indicated that adsorption of dyes by activated bentonite clay is endothermic process. The activated bentonite exhibited good regenerative ability in the 0.1 M NaOH solution. Maximum adsorption capacities of acid activated bentonite clay at 25?C for DR 173 and RR 22 dyes were 356.65 and 109.58 ?mol g-1, respectively.


TANSO ◽  
1991 ◽  
Vol 1991 (148) ◽  
pp. 151-156
Author(s):  
Kazuji Kushiro ◽  
Hirokazu Oda ◽  
Chikao Yokokawa

Langmuir ◽  
2001 ◽  
Vol 17 (11) ◽  
pp. 3301-3306 ◽  
Author(s):  
Fritz Stoeckli ◽  
M. Victoria López-Ramón ◽  
Carlos Moreno-Castilla

Carbon ◽  
1984 ◽  
Vol 22 (2) ◽  
pp. 221-222
Author(s):  
J Rivera-Utrilla ◽  
M.A Ferro-Garcia ◽  
A Mata-Arjona

Sign in / Sign up

Export Citation Format

Share Document