Inhibition effects of heavy metals (copper, nickel, zinc, lead) on anaerobic sludge

2010 ◽  
Vol 23 (1-3) ◽  
pp. 55-60 ◽  
Author(s):  
Meltem Sarioglu ◽  
Serdar Akkoyun ◽  
Turgay Bisgin
2020 ◽  
Vol 169 ◽  
pp. 01023
Author(s):  
Elena Latushkina ◽  
Anna Oleynik

The article presents the results of the assessment of the distribution of heavy metals content in anthropogenic transformed soils of the industrial zone of Moscow. Excesses of norms are shown, geochemical associations are obtained. The work proved to exceed the maximum permissible concentrations of cadmium, lead, copper, nickel, zinc, arsenic for eleven test sites per 13.95 hectares of industrial zone in 57% of the obtained empirical data on the content of pollutants in the soil. In the investigated area, the contents of lead, copper, nickel and zinc are not uniformly distributed and are within wide range. No excess of the norm was recorded for mercury. The isolation of two geochemical associations of manmade genesis is justified. One association includes cadmium lead, copper, and zinc with the system-forming element copper. The other consists of nickel and mercury.


Alloy Digest ◽  
1968 ◽  
Vol 17 (2) ◽  

Abstract COPPER Alloy No. 770 is a spring quality copper-nickel zinc alloy having high resistance to corrosion. It is recommended primarily for optical goods, springs, resistance wire, hardware and similar products. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-185. Producer or source: Copper and copper alloy mills.


1987 ◽  
Vol 33 (6) ◽  
pp. 551-554 ◽  
Author(s):  
Ken F. Jarrell ◽  
Michelle Saulnier ◽  
Art Ley

The effect of ammonium chloride, sodium butyrate, sodium propionate, and the heavy metals nickel, zinc, and copper on methanogenesis by pure cultures of Methanospirillum hungatei, Methanosarcina barkeri, Methanobacterium thermoautotrophicum, and Methanobacterium formicicum at pH 6.5 was studied. The latter three strains were resistant to > 60 g/L of the volatile fatty acids and to > 10 g/L of NH3 N. Methanospirillum hungatei was somewhat more sensitive with 50% inhibition of methanogenesis occurring at 4.2 g/L NH3 N, 27 g/L butyrate, and 41 g/L propionate. All strains were very sensitive to both copper (1–5 mg/L) and zinc (1–10 mg/L), but much more resistant to nickel. Zinc and copper concentrations 30 to 270 times higher were required to cause inhibition of Msp. hungatei incubated in sewage sludge compared with buffer, indicating a strong protective environment was afforded the methanogens against heavy metal toxicity in the sludge.


2014 ◽  
Vol 4 (1) ◽  
pp. 193 ◽  
Author(s):  
Gideon Ramtahal ◽  
Ivan Chang Yen ◽  
Isaac Bekele ◽  
Frances Bekele ◽  
Lawrence Wilson ◽  
...  

<p>The determination of heavy metals in cocoa beans and chocolates is of great importance, due to increasingly stringent regulations being implemented by international legislative bodies and chocolate manufacturers, to protect the health of their consumers. While various techniques exist for heavy metal analyses in cocoa, this study developed a cost-effective, accurate and precise method capable of processing up to 120 samples per batch for the determination of cadmium, copper, nickel and zinc. For sample extractions, a normal laboratory hot plate and locally fabricated high-capacity digestion blocks were used, instead of dedicated block digestion or microwave digestion systems. In addition, only concentrated nitric acid was used, instead of mixed reagents used in standardized methods, for metal extractions from samples, with a sample: extractant ratio of 0.5 g : 10 mL, digestion at 130 ºC, followed by filtration and analysis by flame atomic absorption spectrophotometry. The method was validated with Certified Reference Materials, with heavy metal recoveries generally &gt;95%. Additionally, an in-house quality control sample of ground cocoa nib analyzed together with the Certified Reference Materials was used to monitor the consistency of analyses of heavy metals in cocoa bean samples.</p>


2005 ◽  
Vol 51 (9) ◽  
pp. 251-258 ◽  
Author(s):  
M. Scholz ◽  
P. Anderson ◽  
B.I. Forman

The aim of this investigation was to assess the treatment efficiencies for gully pot liquor of 12 experimental vertical-flow constructed wetland filters containing Phragmites australis (Cav.) Trin. ex Steud. (Common Reed) and filter media of different adsorption capacities in a cold climate. Seven of the twelve filters received inflow water spiked with heavy metals. For one year, hydrated copper nitrate and hydrated nickel nitrate were added to sieved gully pot liquor to simulate contaminated primary treated storm water runoff. The inflow concentrations for dissolved copper, nickel and nitrate-nitrogen were approximately 1.0, 1.0 and 1.45 mg/l, respectively, which represent mean loading rates of 0.063 g/m2/d for Filters 2 and 7 to 11, and 0.115 g/m2/d for Filter 12. For these filters receiving metals, an obvious breakthrough of dissolved nickel was recorded after road gritting and salting during winter. Sodium chloride was responsible for nickel leaching. Reductions of copper, nickel, biochemical oxygen demand and suspended solids were frequently insufficient compared to international secondary wastewater treatment standards. Moreover, the overall filtration performance for all filters was similar.


Sign in / Sign up

Export Citation Format

Share Document