Treatment of gully pot liquor containing heavy metals with constructed wetlands in Scotland

2005 ◽  
Vol 51 (9) ◽  
pp. 251-258 ◽  
Author(s):  
M. Scholz ◽  
P. Anderson ◽  
B.I. Forman

The aim of this investigation was to assess the treatment efficiencies for gully pot liquor of 12 experimental vertical-flow constructed wetland filters containing Phragmites australis (Cav.) Trin. ex Steud. (Common Reed) and filter media of different adsorption capacities in a cold climate. Seven of the twelve filters received inflow water spiked with heavy metals. For one year, hydrated copper nitrate and hydrated nickel nitrate were added to sieved gully pot liquor to simulate contaminated primary treated storm water runoff. The inflow concentrations for dissolved copper, nickel and nitrate-nitrogen were approximately 1.0, 1.0 and 1.45 mg/l, respectively, which represent mean loading rates of 0.063 g/m2/d for Filters 2 and 7 to 11, and 0.115 g/m2/d for Filter 12. For these filters receiving metals, an obvious breakthrough of dissolved nickel was recorded after road gritting and salting during winter. Sodium chloride was responsible for nickel leaching. Reductions of copper, nickel, biochemical oxygen demand and suspended solids were frequently insufficient compared to international secondary wastewater treatment standards. Moreover, the overall filtration performance for all filters was similar.

2012 ◽  
Vol 209-211 ◽  
pp. 1111-1115
Author(s):  
Chun Zhang ◽  
Jie Deng ◽  
Wei Zhang

The dewatering and mineralization of sludge in the constructed reed bed was investigated in this study.The sludge from the secondary sedimentation tank is from in the wastewater treatment plant in Yiyang city,Hunan province.Anaerobic pond and oxidation ditch biological treatment processes is accepted there.The performance of the system was monitored for one year. Total Solids (TS), Volatile Solids(VS), Chemical Oxygen Demand, nutrients (TKN) and Total Phosphorus(TP), heavy metals in the sludge were analysed.The removal rate of COD,NH4-N,and TP of the percolated fluid for the first cycle was also monitored. TS content reached 36.5% for the surface layer and 37.8% for the bottom layer at the end of the examination period.Sludge stabilization in the bed was also observed(VS content decreased to 31.3% and 13.4% respectively for the surface and bottom layer).Concentration of nutrients of the sludge accumulated in the bed also decreased. The heavy metal concentration meets the European Union standards for heavy metals in case of agricultural disposal of the treated sludge.


1986 ◽  
Vol 18 (2) ◽  
pp. 129-139 ◽  
Author(s):  
Ranjit N. Soniassy ◽  
Rodney Lemon

The performance of a municipal sewage lagoon in a subarctic climate (Yellowknife, N.W.T.) was evaluated over a one year period to determine its seasonal treatment capabilities. Raw sewage (influent) and treated effluent were analysed for several physicochemical and microbiological parameters. Effective removals of BOD5, total coliform, fecal coliform, fecal streptococci and heavy metals (Cu, Ni, Zn, Cd, Pb and Hg) were obtained from mid-June to mid-September. No evidence of treatment was observed when the lagoon was under ice cover (October to May). The concentrations of several heavy metals (Cu, Zn and Pb) were found to decrease gradually, reaching a low in summer, before rising again in the fall and winter. A system of managing cold climate lagoons, based on ambient temperature, is presented.


2021 ◽  
Vol 5 (1) ◽  
pp. 223-232
Author(s):  
Mohammed Jr. Kinta ◽  
A. V. Ayanwale ◽  
U. N. Keke ◽  
Y. I. Auta ◽  
B. S. Adama ◽  
...  

Developing countries like Nigeria are faced with increased in generation of domestic, industrial and agricultural wastes, with a large percentage moving. This study evaluates the physico-chemical and some heavy metals concentration in three common species of fish from Tungan Kawo reservoir Kontagora, Nigeria; using standard methods between (July 2018 – February 2019); at four different sampling stations of human activities on the water. Five heavy metals were evaluated (Lead, Copper, Manganese, Iron and Chromium) in the fish samples. Phosphate (0.4 – 2.5) mg/L, Nitrate (3.2 – 7.5) mg/L, Temperature (27 – 32.4) 0C, Dissolved Oxygen (2.4 – 5.2 mg/L), Conductivity (81 – 125 µS/cm), Biochemical Oxygen Demand (1.9 – 4.4 mg/L), Alkalinity (mg/L) and Total Dissolved Solids (117 – 198) ppm were within the standard for drinking water and survival of fish.  However, the pH (6.3 – 9.8) was above the standard for NIS and WHO drinking water but can support aquatic life. Iron (0.64 ± 0.072 mg/kg) was the most highly concentrated in Synodontis clarias while lead (0.01 ± 0.013 mg/kg) was the lowest in Oreochromis niloticus and Coptidon zillii (formerly Tilapia zillii. This current finding indicates that the water is safe for both aquatic life and domestic purpose but not suitable for direct human consumption without being properly treated. However, there is the need for regular monitoring of the heavy metals load in this water body and the aquatic organisms because of the long term effects


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 556 ◽  
Author(s):  
Faouzi Ben Rebah ◽  
Wissem Mnif ◽  
Saifeldin M. Siddeeg

Microorganisms such as bacteria, fungi, and microalgae have been used to produce bioflocculants with various structures. These polymers are active substances that are biodegradable, environmentally harmless, and have flocculation characteristics. Most of the developed microbial bioflocculants displayed significant flocculating activity (FA > 70–90%) depending on the strain used and on the operating parameters. These biopolymers have been investigated and successfully used for wastewater depollution in the laboratory. In various cases, selected efficient microbial flocculants could reduce significantly suspended solids (SS), turbidity, chemical oxygen demand (COD), total nitrogen (Nt), dye, and heavy metals, with removal percentages exceeding 90% depending on the bioflocculating materials and on the wastewater characteristics. Moreover, bioflocculants showed acceptable results for sludge conditioning (accepted levels of dry solids, specific resistance to filtration, moisture, etc.) compared to chemicals. This paper explores various bioflocculants produced by numerous microbial strains. Their production procedures and flocculating performance will be included. Furthermore, their efficiency in the depollution of wastewater will be discussed.


2016 ◽  
Vol 8 (1) ◽  
pp. 174-194 ◽  
Author(s):  
Irina Catianis ◽  
Constantin Ungureanu ◽  
Luca Magagnini ◽  
Elisa Ulazzi ◽  
Tiziana Campisi ◽  
...  

AbstractThe aim of the study was to evaluate the impact of potential pollution sources, mainly from the upstream anthropogenic sources and port-related activities. The in-vestigated area covered a wide range of anthropogenic im-pacts (e.g., industrial wastes, storm water runoff, acciden-tal oil spills, intentional discharges and shipping activities). The quality of water and Sediments was assessed us-ing Standard methods, as physical-chemical parameters, chemistry and biology (microbiology, ecotoxicology) aim-ing to figure the level of pollution and the effect of port-related activities. Seawater quality results agreed generally with environmental Standards. Though, in some samples the concentrations of sulphates (mg/1) and heavy metals (μg/1), as B, As and Se exceeded the recommended lim-its, without posing a serious environmental concern. Most of the surface sediment samples contain critical levels of hydrocarbons (C>12), (mg/kg), polycyclic aromatic hydrocarbons (ng/g) and polychlorobiphenyls (ng/g). For some heavy metals (mg/kg), exchangeable concentrations were found to be very close or above the regulations. The signifi-cance of this study is incontestable taking into account the lack of previous relevant historical data of this area. In this sense, it was possible to indicate, in general, good environmental conditions, despite the industrial and concentrated local port-related activities in the investigated area.


2014 ◽  
Vol 4 (1) ◽  
pp. 193 ◽  
Author(s):  
Gideon Ramtahal ◽  
Ivan Chang Yen ◽  
Isaac Bekele ◽  
Frances Bekele ◽  
Lawrence Wilson ◽  
...  

<p>The determination of heavy metals in cocoa beans and chocolates is of great importance, due to increasingly stringent regulations being implemented by international legislative bodies and chocolate manufacturers, to protect the health of their consumers. While various techniques exist for heavy metal analyses in cocoa, this study developed a cost-effective, accurate and precise method capable of processing up to 120 samples per batch for the determination of cadmium, copper, nickel and zinc. For sample extractions, a normal laboratory hot plate and locally fabricated high-capacity digestion blocks were used, instead of dedicated block digestion or microwave digestion systems. In addition, only concentrated nitric acid was used, instead of mixed reagents used in standardized methods, for metal extractions from samples, with a sample: extractant ratio of 0.5 g : 10 mL, digestion at 130 ºC, followed by filtration and analysis by flame atomic absorption spectrophotometry. The method was validated with Certified Reference Materials, with heavy metal recoveries generally &gt;95%. Additionally, an in-house quality control sample of ground cocoa nib analyzed together with the Certified Reference Materials was used to monitor the consistency of analyses of heavy metals in cocoa bean samples.</p>


Author(s):  
Vasudha Lingampally ◽  
V.R. Solanki ◽  
D. L. Anuradha ◽  
Sabita Raja

In the present study an attempt has been made to evaluate water quality and related density of Cladocerans for a period of one year, October 2015 to September 2016. Water quality parameters such as temperature, PH, total dissolved solids, dissolved oxygen, biological oxygen demand, total alkalinity, total hardness, chlorides, phosphates, and nitrates are presented here to relate with the abundance of Cladocerans. The Cladoceran abundance reflects the eutrophic nature of the Chakki talab.


2021 ◽  
Vol 8 (2) ◽  
pp. 105-122
Author(s):  
Onisogen Simeon Edori ◽  
Enize Simeon Edori

Water samples were collected from four different stations bimonthly from the Orashi River for a period of one year. The samples were collected from the shores of selected communities along the Engenni axis of the river. The samples were treated and analyzed according to standard laboratory and analytical procedures for water physicochemical parameters. The parameters examined were pH, Salinity, chlorides (Cl-), Conductivity, total dissolved solids (TDS), total suspended solids (TSS) turbidity, temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrates (NO3-), sulphate (SO42-) and phosphates (PO43-). The results showed that the mean values of the evaluated parameters were; pH (6.91±0.11), salinity (9.79±0.27 mg/L), Cl (6.25±0.25 mg/L), conductivity (29.66±1.20 µS/cm), TDS (17.66±2.08 mg/L), TSS (16.83±1.15 mg/L), turbidity (11.84±1.50 mg/L), temperature (28.16±0.12 oC), DO (5.91±0.18 mg/L), BOD (7.30±0.60 mg/L), COD (9.41±0.70 mg/L), NO3- (3.42±0.27 mg/L), SO42- (1.15±0.56 mg/L) and PO43- (15.65±5.76 mg/L). The results of the different parameters showed that all of them fall within the WHO acceptable limit except turbidity, DO and BOD that were not within the recommended range, then COD and phosphates that were either within or above the recommended values at different instances. Based on the findings of this work, the water may not be particularly suitable for drinking purposes, but can be used for other household functions that do not require consumption and also for irrigation. Keywords: water, physicochemical property, human activity, environment, contamination


Author(s):  
Chunsheng Qiu ◽  
Jinxin Zheng ◽  
Chenchen Wang ◽  
Bingbing Wang ◽  
Nannan Liu ◽  
...  

Abstract The migration, transformation and ecological risk of heavy metals (Cr, As, Ni, Cu, Zn, Cd and Pb) in the sewage sludge during the microwave-assisted thermal hydrolysis process were investigated under different temperatures (80 °C, 100 °C, 120 °C, 140 °C, and 160 °C). The potential relationship between the bio-availability of heavy metals and the variables of microwave treatment, including pH, ammonium-nitrogen, soluble chemical oxygen demand, pH, soluble protein, soluble polysaccharide and volatile solid, was also explored. The results showed that the migration of heavy metals between solid-liquid phase mainly depended on the temperature. The percentage of all heavy metals (except Cu) in mobile (acid-soluble/exchangeable and reducible) forms decreased after microwave-assisted thermal hydrolysis treatment. The solubilization of compounds with C = O and O-H accompanied with the generation of organic and inorganic metal halides were also observed in the treated sludge through fourier transform infrared spectroscopy analysis. NH4+-N showed the highest negative correlation to the bio-availability of most heavy metals (except Cu and Cr) with coefficients (absolute value) over 0.87 (P &lt; 0.05). VS showed a positive correlation to the bio-availability of most heavy metals (except Cu). The total potential ecological risk index (RI) decreased by 46.65% after microwave treatment at 160 °C.


Sign in / Sign up

Export Citation Format

Share Document