Reverse osmosis concentrate treatment by a PAC countercurrent four-stage adsorption-MF hybrid process – a pilot-scale study

2017 ◽  
Vol 95 ◽  
pp. 1-8 ◽  
Author(s):  
Yanlin Yuan ◽  
Ping Gu ◽  
Jinling Li ◽  
Lihua Dong ◽  
Guanghui Zhang
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hanaa M. Ali ◽  
Hanaa Gadallah ◽  
Sahar S. Ali ◽  
Rania Sabry ◽  
A. G. Gadallah

This paper was focused on the investigation of a forward osmosis- (FO-) reverse osmosis (RO) hybrid process to cotreat seawater and impaired water from steel industry. By using this hybrid process, seawater can be diluted before desalination, hence reducing the energy cost of desalination, and simultaneously contaminants present in the impaired water are prevented from migrating into the product water through the FO and RO membranes. The main objective of this work was to investigate on pilot-scale system the performance of the combined FO pretreatment and RO desalination hybrid system and specifically its effects on membrane fouling and overall solute rejection. Firstly, optimization of the pilot-scale FO process to obtain the most suitable and stable operating conditions for practical application was investigated. Secondly, pilot-scale RO process performance as a posttreatment to FO process was evaluated in terms of water flux and rejection. The results indicated that the salinity of seawater reduced from 35000 to 13000 mg/L after 3 hrs using FO system, while after 6 hrs it approached 10000 mg/L. Finally, FO/RO system was tested on continuous operation for 15 hrs and it was demonstrated that no pollutant was detected neither in draw solution nor in RO permeate after the end of operating time.


Author(s):  
Zakiya Tabassum ◽  
Rajalakshmi Mudbidre

The exponentially multiplying population of the world demands increasing freshwater resources. Thelimited resources comprising less than 3% of the earth’s water resources are getting polluted at an alarming rate. To deal with this situation, seawater reverse osmosis is being carried out at large scales across the globe. The concentrate generated in return is two times more concentrated in terms of total dissolved solids when compared to the feed. The adverse effects of the concentrate stream on the marine ecosystem and further pollution of water cause an immediate need to treat the concentrate. In this review, the harm caused by the direct discharge of concentrate stream has been discussed and therefore volume minimization using treatment methods has been addressed. The treatment methods are mainly classified into four types; membrane-based, thermal-based, electricity-based, and chemical-based methods. Integrated methods, which have been mainly tested on a pilot scale for zero liquid discharge, have also been discussed. The treatment methods that are probable for seawater concentrate treatment falling under the above categories for other concentrate sources have also been attended to. Finally, the disposal methods employed for the discharge of the leftover concentrate have been addressed. Thermal methods are well established but require a lot of energy compared to other methods whereas chemical methods can be economic due to the profit obtained from recovered chemicals, but they are mostly employed for pretreatment. Electricity-based and membrane-based methods are emerging technologies. It was also found that seawater reverse osmosis concentrate is usually discharged directly and therefore integrated methods based on zero liquid discharge are to be implemented. To compensate for the intensive research required for zero liquid discharge to become a reality, innovative and environmentally-friendly disposal methods are available to cut the resultant footprint.


2016 ◽  
Vol 34 ◽  
pp. 98-104 ◽  
Author(s):  
Yanlin Yuan ◽  
Ping Gu ◽  
Yanling Yang ◽  
Guanghui Zhang

Sign in / Sign up

Export Citation Format

Share Document