Photo-catalytic inactivation of E. coli using stabilized Ag/S, N-TiO2 nanoparticles by fixed bed photo-reactor under visible light and sunlight

2018 ◽  
Vol 110 ◽  
pp. 109-116 ◽  
Author(s):  
Neda Masoudipour ◽  
Mehraban Sadeghi ◽  
Fazel Mohammadi-Moghadam
RSC Advances ◽  
2021 ◽  
Vol 11 (23) ◽  
pp. 13980-13991
Author(s):  
Jiao Wang ◽  
Ladislav Svoboda ◽  
Zuzana Němečková ◽  
Massimo Sgarzi ◽  
Jiří Henych ◽  
...  

Ag nanoparticles decorated-TiO2 P25 are a viable alternative for the degradation, through a rutile-mediated mechanism, of fluoroquinolone-based antibiotics under visible light irradiation and, at the same time, for bacteria inactivation in water.


2016 ◽  
Vol 13 (1) ◽  
pp. 110-116 ◽  
Author(s):  
Rani P. Barkul ◽  
Farah-Naaz A. Shaikh ◽  
Sagar D. Delekar ◽  
Meghshyam K. Patil

2020 ◽  
Vol 01 ◽  
Author(s):  
Diana Sannino ◽  
Vincenzo Vaiano ◽  
Olga Sacco ◽  
Nicola Morante ◽  
Luca De Guglielmo ◽  
...  

Aims: The aim of this work was to investigate the impact of light modulation parameters on the degradation of terephtalic acid, an organic model pollutant, within a heterogeneous photocatalytic system under visible light. For this purpose, a fixed bed photocatalytic reactor, irradiated by white-light LEDs matrix controlled by a system for light dimming, was used. The bed consisted of a nitrogen-doped titania photocatalyst deposited on polystyrene pellets. Background: Wastewater containing TPA can be treated into conventional aerobic biological units. However, the mineralization of TPA is slow and inefficient and its presence influences negatively the biodegradation efficiency because this pollutant inhibits microbial growth. Nowadays innovative technologies named advanced oxidation processes (AOPs), such as heterogeneous photocatalysis with UV and visible light, ozonation, Fenton oxidation have gained popularity for effective organic destruction of TPA from wastewater. The heterogeneous photocatalytic oxidation process of the TPA under visible light is the most advantageous process in terms of both fixed and operating costs. Objective: In this work the successful application of light modulation techniques to degradation of TPA using a photocatalytic system with supported visible active photocatalysts (N-doped TiO2) immobilized on polystyrene pellets was reported. In particular, sinusoidal lighting has been used analyzing the influence of the period of oscillation and the amplitude of the light modulation on the reaction kinetics, in such a way as to minimize the times and energy costs for the process. Methods: To evaluate the influence of light modulation on the efficiency of the TPA removal, a discontinuous system composed by a Recirculating Photocatalytic Fixed Bed Reactor (RPFBR) irradiated by a matrix of white light LEDs was used. The flat geometry of photoreactor guarantees the efficient excitation of photocatalyst. An amount of 250 mL of aqueous solution with initial TPA concentration of 12.5 ppm was applied in the photocatalytic tests lasting 180 min of irradiation fixed or sinusoidal modulated. Results: The results show that the variation of the oscillation period of the sinusoidal modulation has a relevant influence on the photodegradation of TPA and a maximum value of the apparent kinetic constant, 0.0045 min-1 is found when the period of oscillation is 0.24 s. The sinusoidal modulation with optimal amplitude is that with current between 50-200 mA, that shows the highest value of the apparent kinetic constant, equal to 0.0046 min-1. The optimal sinusoidal modulation, as a consequence is with current between 50-200 mA and period of 0.24 s. From the data collected from the tests, it is possible to evaluate the energy cost necessary to obtain the reduction of 90% of the terephthalic acid in 1 m3 of polluted water for each modulation (E E/O ), and compare these values with other tests for TPA degradation reported in the literature. The internal comparison and with the three systems of literature showed the optima sinusoidal modulation of LEDs matrix permits a strong reduction the electrical energy consumption. Conclusion: Photocatalytic tests have demonstrated the improvement of the process energy efficiency using the light modulation technique . A further confirmation of the advantage of light modulation was obtained by comparing the energy costs required for the abatement of 90% of the terephthalic acid in 1m 3 of the photocatalytic system. Finally, a mathematical model for photocatalytic degradation of terephthalic acid within the recirculating fixed bed photocatalytic reactor, irradiated by white-light LEDs was developed.


RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 6383-6394 ◽  
Author(s):  
Haishuai Li ◽  
Linlin Cai ◽  
Xin Wang ◽  
Huixian Shi

A noval ternary nanocomposite AgCl/Ag3PO4/g-C3N4 was successfully synthesized for photocatalytic degradation of methylene blue, methylparaben and inactivation of E. coli under visible light irradiation, showing excellent photocatalytic degradation performance and stability.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 235
Author(s):  
Hayette Benkhennouche-Bouchene ◽  
Julien G. Mahy ◽  
Cédric Wolfs ◽  
Bénédicte Vertruyen ◽  
Dirk Poelman ◽  
...  

TiO2 prepared by a green aqueous sol–gel peptization process is co-doped with nitrogen and zirconium to improve and extend its photoactivity to the visible region. Two nitrogen precursors are used: urea and triethylamine; zirconium (IV) tert-butoxide is added as a source of zirconia. The N/Ti molar ratio is fixed regardless of the chosen nitrogen precursor while the quantity of zirconia is set to 0.7, 1.4, 2, or 2.8 mol%. The performance and physico-chemical properties of these materials are compared with the commercial Evonik P25 photocatalyst. For all doped and co-doped samples, TiO2 nanoparticles of 4 to 8 nm of size are formed of anatase-brookite phases, with a specific surface area between 125 and 280 m2 g−1 vs. 50 m2 g−1 for the commercial P25 photocatalyst. X-ray photoelectron (XPS) measurements show that nitrogen is incorporated into the TiO2 materials through Ti-O-N bonds allowing light absorption in the visible region. The XPS spectra of the Zr-(co)doped powders show the presence of TiO2-ZrO2 mixed oxide materials. Under visible light, the best co-doped sample gives a degradation of p-nitrophenol (PNP) equal to 70% instead of 25% with pure TiO2 and 10% with P25 under the same conditions. Similarly, the photocatalytic activity improved under UV/visible reaching 95% with the best sample compared to 50% with pure TiO2. This study suggests that N/Zr co-doped TiO2 nanoparticles can be produced in a safe and energy-efficient way while being markedly more active than state-of-the-art photocatalytic materials under visible light.


RSC Advances ◽  
2017 ◽  
Vol 7 (76) ◽  
pp. 48083-48094 ◽  
Author(s):  
Sunderishwary S. Muniandy ◽  
Noor Haida Mohd Kaus ◽  
Zhong-Tao Jiang ◽  
Mohammednoor Altarawneh ◽  
Hooi Ling Lee

Mesoporous anatase TiO2 nanoparticles are produced by employing a facile green chemistry approach at low temperature with soluble starch as the template in this work. The obtained TiO2 photocatalyst is visible-light active with good photocatalytic activities.


Sign in / Sign up

Export Citation Format

Share Document