Evaluation of river network planning layout in plain city consideration for combining water quality and flood control

2019 ◽  
Vol 168 ◽  
pp. 224-234
Author(s):  
Cheng Gao ◽  
Yuquan Zhang ◽  
Yi Zhou ◽  
Chunxu Gu ◽  
Dandan Qing ◽  
...  
2021 ◽  
Vol 275 ◽  
pp. 116651
Author(s):  
Xinchen He ◽  
Hua Wang ◽  
Wei Zhuang ◽  
Dongfang Liang ◽  
Yanhui Ao

Water ◽  
2018 ◽  
Vol 10 (5) ◽  
pp. 623 ◽  
Author(s):  
Zhengzhao Li ◽  
Mingjing Dong ◽  
Tony Wong ◽  
Jianbin Wang ◽  
Alagarasan Kumar ◽  
...  

This paper presents a framework of objectives and indexes for sponge cities implementation in China. The proposed objectives and indexes aims to reflect whether the city is in accord with the sponge city. Different cities have different objectives and indexes as each city has its own geologic and hydrogeological conditions. Therefore, the main problems (e.g., water security and flood risks) in the central urban area of Changzhou city, China were evaluated scientifically. According to the local conditions, four objectives and eleven indexes have been made as a standard to estimate the sponge city and set a goal for the city development to reach the goal of sustainable urban development. The strategy of process control was implemented to improve the standard of urban drainage and flood control facilities, regulate total runoff and reduce storm peak flow, and the ecological monitoring of the function of the rivers and lakes. The objectives of sponge cities include water security, water quality improvement, healthy water ecosystems, and water utilization efficiency. Urban flood prevention capacity, river and lake water quality compliance, and annual runoff control are the key objectives to encourage the use of non-conventional water resources.


2021 ◽  
Author(s):  
Stefan Krause ◽  

<p>It is probably hard to overestimate the significance of the River Ganges for its spiritual, cultural and religious importance. As the worlds’ most populated river basin and a major water resource for the 400 million people inhabiting its catchment, the Ganges represents one of the most complex and stressed river systems globally. This makes the understanding and management of its water quality an act of humanitarian and geopolitical relevance. Water quality along the Ganges is critically impacted by multiple stressors, including agricultural, industrial and domestic pollution inputs, a lack and failure of water and sanitation infrastructure, increasing water demands in areas of intense population growth and migration, as well as the severe implications of land use and climate change. Some aspects of water pollution are readily visualised as the river network evolves, whilst others contribute to an invisible water crisis (Worldbank, 2019) that affects the life and health of hundreds of millions of people.</p><p>We report the findings of a large collaborative study to monitor the evolution of water pollution along the 2500 km length of the Ganges river and its major tributaries that was carried out over a six-week period in Nov/Dec 2019 by three teams of more than 30 international researchers from 10 institutions. Surface water and sediment were sampled from more than 80 locations along the river and analysed for organic contaminants, nutrients, metals, pathogen indicators, microbial activity and diversity as well as microplastics, integrating in-situ fluorescence and UV absorbance optical sensor technologies with laboratory sample preparation and analyses. Water and sediment samples were analysed to identify the co-existence of pollution hotspots, quantify their spatial footprint and identify potential source areas, dilution, connectivity and thus, derive understanding of the interactions between proximal and distal of sources solute and particulate pollutants.</p><p>Our results reveal the co-existence of distinct pollution hotspots for several contaminants that can be linked to population density and land use in the proximity of sampling sites as well as the contributing catchment area. While some pollution hotspots were characterised by increased concentrations of most contaminant groups, several hotspots of specific pollutants (e.g., microplastics) were identified that could be linked to specific cultural and religious activities. Interestingly, the downstream footprint of specific pollution hotspots from contamination sources along the main stem of the Ganges or through major tributaries varied between contaminants, with generally no significant downstream accumulation emerging in water pollution levels, bearing significant implications for the spatial reach and legacy of pollution hotspots. Furthermore, the comparison of the downstream evolution of multi-pollution profiles between surface water and sediment samples support interpretations of the role of in-stream fate and transport processes in comparison to patterns of pollution source zone activations across the channel. In reporting the development of this multi-dimensional pollution dataset, we intend to stimulate a discussion on the usefulness of large river network surveys to better understand the relative contributions, footprints and impacts of variable pollution sources and how this information can be used for integrated approaches in water resources and pollution management.</p>


Author(s):  
Weiwei Song ◽  
Xingqian Fu ◽  
Yong Pang ◽  
Dahao Song ◽  
Qing Xu ◽  
...  

With the rapid development of China, water pollution is still a serious problem despite implementation of control measures. Reasonable water environment management measures are very important for improving water quality and controlling eutrophication. In this study, the coupled models of hydrodynamics, water quality, and eutrophication were used to predict artificial Playground Lake water quality in the Zhenjiang, China. Recommended “unilateral” and “bilateral” river numerical models were constructed to simulate the water quality in the Playground Lake without or with water diversion by pump, sluice and push pump. Under “unilateral” and “bilateral” river layouts, total nitrogen and total phosphorus meet the landscape water requirement through water diversion. Tourist season in spring and summer and its suitable temperature result in heavier eutrophication, while winter is lighter. Under pumping condition, water quality and eutrophication of “unilateral” river is better than “bilateral” rivers. Under sluice diversion, the central landscape lake of “unilateral river” is not smooth, and water quality and eutrophication is inferior to the “bilateral”. When the water level exceeds the flood control level (4.1 m), priority 1 is launched to discharge water from the Playground Lake. During operation of playground, when water level is less than the minimum level (3.3 m), priority 2 is turned on for pumping diversion or sluice diversion to Playground Lake. After opening the Yangtze river diversion channel sluice, priority 3 is launched for sluice diversion to the Playground Lake. When the temperature is less than 15 °C, from 15 °C to 25 °C and higher than 25 °C, the water quality can be maintained for 15 days, 10 days and 7 days, respectively. Corresponding to the conditions of different priority levels, reasonable choices of scheduling measures under different conditions to improve the water quality and control eutrophication of the Playground Lake. This article is relevant for the environmental management of the artificial Playground Lake, and similar lakes elsewhere.


Author(s):  
Shalini Saxena

Wetlands, either constructed or natural, offer a cheaper and low-cost alternative technology for wastewater treatment. A constructed wetland system that is specifically engineered for water quality improvement as a primary purpose is termed as a ‘Constructed Wetland Treatment System’ (CWTS). In the past, many such systems were constructed to treat low volumes of wastewater loaded with easily degradable organic matter for isolated populations in urban areas. However, widespread demand for improved receiving water quality, and water reclamation and reuse, is currently the driving force for the implementation of CWTS all over the world. Recent concerns over wetland losses have generated a need for the creation of wetlands, which are intended to emulate the functions and values of natural wetlands that have been destroyed. Natural characteristics are applied to CWTS with emergent macrophyte stands that duplicate the physical, chemical and biological processes of natural wetland systems. The number of CWTS in use has very much increased in the past few years. The use of constructed wetlands is gaining rapid interest. Most of these systems cater for tertiary treatment from towns and cities. They are larger in size, usually using surface-flow system to remove low concentration of nutrient (N and P) and suspended solids. However, in some countries, these constructed wetland treatment systems are usually used to provide secondary treatment of domestic sewage for village populations. These constructed wetland systems have been seen as an economically attractive, energy-efficient way of providing high standards of wastewater treatment by the help of Phragmite karka plant. Typically, wetlands are constructed for one or more of four primary purposes: creation of habitat to compensate for natural wetlands converted for agriculture and urban development, water quality improvement, flood control, and production of food and fiber.


2013 ◽  
Vol 316-317 ◽  
pp. 732-740 ◽  
Author(s):  
Hui Ping Zhou ◽  
Wei Yun Shao ◽  
Li Jie Jiang

In order to evaluate the effective of the hydrodynamic control of pumps and slice gates in plain river network on the water quality improvement, an optimal mathematic model of hydrodynamic controlling on the pumps and slice gates in plain river network was established by combining the water quality objective function and the cost objective function together. The cost function has been set as the main objective function, while the water quality objective function was simplified as the restrained condition for every required water quality index, through which the multi-objective optimization was transferred into a single-objective optimization. Then, this optimal model was solved by coupling the water environmental model with the hybrid genetic algorithm. The case study of Jiaxing river network shows that the proposed hydrodynamic controlling optimal model in this paper can develop the optimal water diversion scheme for water quality improvement and cut its cost. It works better compared to the traditional water quality objective function and can be used in the engineering practice.


2013 ◽  
Vol 13 (10) ◽  
pp. 1767-1773
Author(s):  
Ligang Fang ◽  
Jinxiang Li ◽  
Zhaobin Liu ◽  
Changbo Tang ◽  
Zhu Liang

Sign in / Sign up

Export Citation Format

Share Document