scholarly journals Research on Water Environment Regulation of Artificial Playground Lake Interconnected Yangtze River

Author(s):  
Weiwei Song ◽  
Xingqian Fu ◽  
Yong Pang ◽  
Dahao Song ◽  
Qing Xu ◽  
...  

With the rapid development of China, water pollution is still a serious problem despite implementation of control measures. Reasonable water environment management measures are very important for improving water quality and controlling eutrophication. In this study, the coupled models of hydrodynamics, water quality, and eutrophication were used to predict artificial Playground Lake water quality in the Zhenjiang, China. Recommended “unilateral” and “bilateral” river numerical models were constructed to simulate the water quality in the Playground Lake without or with water diversion by pump, sluice and push pump. Under “unilateral” and “bilateral” river layouts, total nitrogen and total phosphorus meet the landscape water requirement through water diversion. Tourist season in spring and summer and its suitable temperature result in heavier eutrophication, while winter is lighter. Under pumping condition, water quality and eutrophication of “unilateral” river is better than “bilateral” rivers. Under sluice diversion, the central landscape lake of “unilateral river” is not smooth, and water quality and eutrophication is inferior to the “bilateral”. When the water level exceeds the flood control level (4.1 m), priority 1 is launched to discharge water from the Playground Lake. During operation of playground, when water level is less than the minimum level (3.3 m), priority 2 is turned on for pumping diversion or sluice diversion to Playground Lake. After opening the Yangtze river diversion channel sluice, priority 3 is launched for sluice diversion to the Playground Lake. When the temperature is less than 15 °C, from 15 °C to 25 °C and higher than 25 °C, the water quality can be maintained for 15 days, 10 days and 7 days, respectively. Corresponding to the conditions of different priority levels, reasonable choices of scheduling measures under different conditions to improve the water quality and control eutrophication of the Playground Lake. This article is relevant for the environmental management of the artificial Playground Lake, and similar lakes elsewhere.

2013 ◽  
Vol 838-841 ◽  
pp. 1753-1758
Author(s):  
Zhi Qi Liu ◽  
Jin Xi Lu ◽  
Jian Jiao ◽  
Qing Zhang

The limited water level of reservoir by stage, fully consider the seasonal variations of the average annual precipitation characteristics in every reservoirs control catchment. Its not only ensuring the rational use of water resources, increasing economic and social benefits to the reservoir, but also ensuring the safety of flood control reservoir flood season, to protect people's lives and property. Determine flood limit level for small reservoir by installments should consider the balance between the economic benefits from improving the water level and the consumption of human and financial resources caused by the installments flood water level adjustment. At the same time, the water resources should be intelligent used in order to let the level of reservoir get in normal. This paper, according to the characteristics of small reservoir, calculated on the reservoir storage capacity can be increased basis of the existing flood control capacity through calculating the value of membership function during reservoir flood season. So that the new limited water level can be obtained after calculating the reservoir capacity increase according to the capacity-water level graph.


2016 ◽  
Vol 47 (S1) ◽  
pp. 161-174 ◽  
Author(s):  
Yanyan Li ◽  
Guishan Yang ◽  
Bing Li ◽  
Rongrong Wan ◽  
Weili Duan ◽  
...  

The Jingjiang Three Outlets (JTO) are the water-sediment connecting channels between the Yangtze River and the Dongting Lake. The discharge diversion of the JTO plays a dominant role in the flood control of the middle–lower Yangtze River, Dongting Lake evolution, and ecological environment. After the operation of the Three Gorges Dam (TGD), the river channels downstream experienced dramatic channel changes. To study the influences of the channel change on the discharge diversion, the authors analyzed the channel changes by water level–discharge rating curves and cross-sectional channel profiles in 1980–2014. Hence, changes in the water level with the same discharge and the decline of discharge diversion at the JTO were noted. Channel incision caused the water level with the same discharge to greatly decrease in the upper Jingjiang River. The water level with the same discharge significantly increased at the JTO as a result of the channel deposition. The channel changes contributed approximately 37.74% and 76.36%, respectively, to the amount and ratio of discharge diversion decreases after the TGD operation. The channel changes serve as the primary factor in facilitating the decrease in the discharge diversion ratio, but not the main factor for the decreased amount of the discharge diversion.


2017 ◽  
Vol 17 (6) ◽  
pp. 1774-1784 ◽  
Author(s):  
L. Zhang ◽  
M. R. Hipsey ◽  
G. X. Zhang ◽  
B. Busch ◽  
H. Y. Li

Abstract Chagan Lake serves as an irrigation storage reservoir for the Qianguo Irrigation Area and an important ecological barrier in western Jilin. The coupled TUFLOW-FV and Aquatic Ecodynamic (AED2) models were used to simulate the hydrodynamic and water quality of Chagan Lake, and propose the water diversion scheme that could improve the water quality to reach Grade III and maintain the ecological water level. The simulation results showed a satisfactory agreement with observations. The total carrying loads of NH3-N, total nitrogen (TN) and total phosphorus (TP) for Chagan Lake were 1,147.6, 3,686.2 and 100.8 t from May to October. The range of the minimum amounts of water diversion to keep the water quality as Grade III and maintain the maximum ecological water level of 131.5 m for TN, TP were separately [32.60, 49.84, 57.19, 63.70, 70.91], [117.25, 135.26, 168.17, 190.65, 218.32] million m3 and the corresponding reduction amounts of farmland drainage for TN, TP were separately [4.03, 0, 0, 0, 0], [73.08, 61.88, 50.23, 40.94, 31.98] million m3 under the rainfall guarantee rates of 10%, 20%, 50%, 75%, 90%, respectively. The simulation results provide a scientific basis for the water quality improvement and ecological water supplement required for the interconnected river–lake system network (IRLSN) in Western Jilin Province.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 587
Author(s):  
Qiuxia Ma ◽  
Yong Pang ◽  
Ronghua Mu

In recent years, due to unsustainable production methods and the demands of daily life, the water quality of the Yangtze River has deteriorated. In response to Yangtze River protection policy, and to protect and restore the ecological environment of the river, a two-dimensional model of the Jiangsu section was established to study the water environmental capacity (WEC) of 90 water environment functional zones. The WEC of the river in each city was calculated based on the results of the water environment functional zones. The results indicated that the total WECs of the study area for chemical oxygen demand (COD), ammonia nitrogen (NH3-N), and total phosphorus (TP) were 251,198 t/year, 24,751 t/year, and 3251 t/year, respectively. Among the eight cities studied, Nanjing accounted for the largest proportion (25%) of pollutants discharged into the Yangtze River; Suzhou (11%) and Zhenjiang (12%) followed, and Wuxi contributed the least (0.4%). The results may help the government to control the discharge of pollutants by enterprises and sewage treatment plants, which would improve the water environment and effectively maintain the water ecological function. This research on the WEC of the Yangtze River may serve as a basis for pollution control and water quality management, and exemplifies WEC calculations of the world’s largest rivers.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1362
Author(s):  
Liang Zheng ◽  
Zeyu An ◽  
Xiaoling Chen ◽  
Hai Liu

In recent years, the rapid development of the population, agriculture, and tourism around Erhai Lake has caused increasing environmental problems, which have seriously affected the ecological status of the lake. This study analyzed changes in water volume and quality in Erhai Lake, based on statistical data from 2000 to 2019, combined with climate, land-use type, and socioeconomic data, as well as the influencing factors of water environmental changes in the Erhai Lake basin. The main conclusions include: the water storage of Erhai Lake increased by 3.8 × 106 m3 year−1, from 2000 to 2019. The monthly variation in water volume showed a trend of first decreasing and then increasing, in which it increased from August to December and decreased from January to July. The change in water volume was mainly affected by climate factors. From 2000 to 2019, the nitrogen concentration in Erhai Lake showed an increasing trend, and the changes in water quality were closely related to human activities. In the northern part of the basin, agricultural nonpoint source pollution was the main factor affecting water quality, while in the southern part of the basin, economic development, accelerated urbanization, and tourism were the main factors affecting water quality.


2020 ◽  
Author(s):  
Xintong Li ◽  
Bing Liu ◽  
Yuanming Wang ◽  
Yongan Yang ◽  
Ruifeng Liang ◽  
...  

Abstract. The construction of large reservoirs results in the formation of tributary bays, and tributary bays are inevitably influenced by the backwater jacking and intrusion of the main reservoir. The hydrodynamic conditions and the environmental factors of tributary bays exhibit complex distribution characteristics and eutrophication occur frequently. Thus, exploring the distribution and evolution of the hydrodynamic and water environment characteristics of tributary bays in response to backwater jacking and intrusion is the key to solving eutrophication and other problems relevant to water environment. In this paper, a typical tributary bay (Tangxi River) of the Three Gorges Reservoir (TGR) was selected to study the hydrodynamic and environmental characteristics of the tributary bay influenced by the jacking and intrusion of the main reservoir. The flow field, water temperature and water quality of the Tangxi River were simulated using the hydrodynamic and quality model CE-QUAL-W2, and the eutrophication status of the tributary bay was also evaluated. The results showed that the main reservoir had different effects on its tributary bay in each month. The tributary bay was mainly affected by backwater jacking of the main reservoir when the water level dropped and by intrusion of the main reservoir when the water level rose. An obvious quality concentration boundary existed in the tributary bay, which was basically consistent with the regional boundary in the flow field. The flow field and water quality on both sides of the boundary were quite different. The results of this study can help us figure out how the backwater jacking and intrusion of the main reservoir influence the hydrodynamic and water environment characteristics of the tributary bay and provide guidance for water environment protection in the tributary bays.


2011 ◽  
Vol 183-185 ◽  
pp. 278-281
Author(s):  
Zhi Xiao Liu ◽  
Jin Long Zuo

With rapid development of food industry, the production of soybean sauce is increasing in recent years. The sauce wastewater is doing greater and greater harm to the water environment. In order to tackle this problem, the operation time on the sauce wastewater treatment were investigated. The results showed that the process has a better effect for ammonia nitrogen, the orthophosphate and COD removal. The effluent ammonia nitrogen was less than 5mg/L and the ammonia nitrogen removal efficiency could reach about 90% with the aeration time 2 h-3.5 h. The orthophosphate increased during the anoxic stage while decreased during the aerobic stage. At the end of the aerobic stage, the orthophosphate concentration and the COD could reach about 1mg/L and 21 mg/L respectively when aeration time was 2 h-3.5 h. The better operation time (the aeration time) was at 2 h-3.5 h and the system could get a good water quality for sauce wastewater treatment.


2019 ◽  
Vol 8 (1) ◽  
pp. 18 ◽  
Author(s):  
Mutao Huang ◽  
Yong Tian

Understanding the complex hydrodynamics and transport processes are of primary importance to alleviate and control the eutrophication problem in lakes. Numerical models are used to simulate these processes. However, it is often difficult to perform such a numerical modeling simulation for common users. This study presented an integrated graphic modeling system designed for three-dimensional hydrodynamic and water quality simulation in lakes. The system, called the Lake Modeling System (LMS), provides necessary functionalities streamlined for hydrodynamic modeling. The LMS provides a geographic information system (GIS)-based data processing framework to establish a model and provides capabilities for displaying model input and output information. The LMS also provides mapping and visualization tools to support the model development process. All of these features in a GIS-based framework makes the task of complex hydrodynamic and water quality modeling easier. The applicability of the LMS is demonstrated by a case study in Lake Donghu, which is a large urban lake in the middle reaches of the Yangtze River in China. The LMS was utilized to setup and calibrate a model for Lake Donghu. Then the model was used to study the effects of a water diversion project on the change in hydrodynamics and the water quality.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1694
Author(s):  
Chenjuan Jiang ◽  
Jia’nan Zhou ◽  
Jingcai Wang ◽  
Guosheng Fu ◽  
Jiren Zhou

The Lixiahe abdominal area is a representative plain river network in the lower reaches of the Huai River, being an upstream section of south-to-north water diversion from the Yangtze River in Jiangsu Province, China. The assessment of long-term water quality variation and the identification of probable causes can provide references for sustainable water resources management. Based on the monthly water quality data of 15 monitoring stations in the Lixiahe abdominal area, the periodic characteristics and tendency of water quality variation were studied by combining wavelet analysis, the Mann–Kendall trend test, and Sen’s slope estimator, and the correlation between water quality variation, water level, and water diversion was discussed with cross wavelet transform and wavelet coherence. The results show that the comprehensive water quality index (CWQI) included periodic fluctuations on multiple scales from 0.25 to 5 years. The CWQI of 7 out of 15 monitoring stations has a significant decreasing trend, indicating regional water quality improvement. The trend slope ranges from −0.071/yr to 0.007/yr, where −0.071/yr indicates the water quality improvement by one grade in 15 years. The spatial variation of water quality in the Lixiahe abdominal area was significant. The water quality of the main water diversion channels and its nearby rivers was significantly improved, while the improvement of other areas was not significant or even became worse due to the increasing discharge of pollutants. The CWQI of the main water diversion channels and its nearby rivers was inversely correlated with the amount of water diversion. The greater the amount of water diversion, the better the water quality. The water diversion from the Yangtze River has played an important role in improving the regional water environment.


Sign in / Sign up

Export Citation Format

Share Document