Applications of dye adsorption in fixed bed column and modeling studies

2021 ◽  
Vol 222 ◽  
pp. 209-218
Author(s):  
Muhammed Onay ◽  
Çiğdem Sarıcı Özdemir
Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 54
Author(s):  
Vairavel Parimelazhagan ◽  
Gautham Jeppu ◽  
Nakul Rampal

The adsorption of Congo red (CR), an azo dye, from aqueous solution using free and immobilized agricultural waste biomass of Nelumbo nucifera (lotus) has been studied separately in a continuous fixed-bed column operation. The N. nucifera leaf powder adsorbent was immobilized in various polymeric matrices and the maximum decolorization efficiency (83.64%) of CR occurred using the polymeric matrix sodium silicate. The maximum efficacy (72.87%) of CR dye desorption was obtained using the solvent methanol. Reusability studies of free and immobilized adsorbents for the decolorization of CR dye were carried out separately in three runs in continuous mode. The % color removal and equilibrium dye uptake of the regenerated free and immobilized adsorbents decreased significantly after the first cycle. The decolorization efficiencies of CR dye adsorption were 53.66% and 43.33%; equilibrium dye uptakes were 1.179 mg g–1 and 0.783 mg g–1 in the third run of operation with free and immobilized adsorbent, respectively. The column experimental data fit very well to the Thomas and Yoon–Nelson models for the free and immobilized adsorbent with coefficients of correlation R2 ≥ 0.976 in various runs. The study concludes that free and immobilized N. nucifera can be efficiently used for the removal of CR from synthetic and industrial wastewater in a continuous flow mode. It makes a substantial contribution to the development of new biomass materials for monitoring and remediation of toxic dye-contaminated water resources.


Author(s):  
S.I. Suárez-Vázquez ◽  
◽  
J.A. Vidales-Contreras ◽  
J.M. Márquez-Reyes ◽  
A. Cruz-López ◽  
...  

2004 ◽  
Vol 38 (1) ◽  
pp. 71-78 ◽  
Author(s):  
S. Netpradit ◽  
P. Thiravetyan ◽  
S. Towprayoon

2018 ◽  
Vol 132 ◽  
pp. 63-74 ◽  
Author(s):  
Lida Rafati ◽  
Mohammad Hassan Ehrampoush ◽  
Amir Abbas Rafati ◽  
Mehdi Mokhtari ◽  
Amir Hossein Mahvi

2018 ◽  
Vol 149 ◽  
pp. 02088 ◽  
Author(s):  
Marouane El Alouani ◽  
Saliha Alehyen ◽  
Mohammed El Achouri ◽  
M’hamed Taibi

Cationic dye adsorption from aqueous solution onto synthesized geopolymer was investigated by batch and fixed bed column experiments. The geopolymer material was elaborated by alkali solution and fly ash supplied by Jorf Lasfar power plant of Morocco. Physical and chemical characteristics of samples were determined by FX, DRX, SEM, 29Si MAS NMR and Zeta potential methods. The Brunauer, Emmett and Teller (BET) technique is used to determine the surface area. The Barrett-Joyner-Halenda (BJH) method was performed to obtain pore size distribution curves and average pore diameter. Kinetics data were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion models. To predict the breakthrough curves and determine the main fixed bed column parameters, three kinetic models; Tomas, Bohart–Adams and Yoon-Nelson models are applied to fitting the experimental data. The kinetic study showed that the pseudo-second-order can be used to describe the methylene blue (MB) adsorption process on the geopolymer matrix. The kinetic models of the adsorption in dynamic column are suitable to describe the continuous adsorption process of dyestuff by the geopolymer. The results of this study indicated that geopolymer derived from fly ash can be used as a low cost effective adsorbent for cationic dye removal from industrial aqueous effluent.


Sign in / Sign up

Export Citation Format

Share Document