Etiology and Prevention of Food-borne Bacterial Gastroenteritis

Author(s):  
Mohammad Islam ◽  
Mohammad Asadulghani
2010 ◽  
Vol 76 (7) ◽  
pp. 2122-2128 ◽  
Author(s):  
Mark Reuter ◽  
Arthur Mallett ◽  
Bruce M. Pearson ◽  
Arnoud H. M. van Vliet

ABSTRACT The microaerophilic human pathogen Campylobacter jejuni is the leading cause of food-borne bacterial gastroenteritis in the developed world. During transmission through the food chain and the environment, the organism must survive stressful environmental conditions, particularly high oxygen levels. Biofilm formation has been suggested to play a role in the environmental survival of this organism. In this work we show that C. jejuni NCTC 11168 biofilms developed more rapidly under environmental and food-chain-relevant aerobic conditions (20% O2) than under microaerobic conditions (5% O2, 10% CO2), although final levels of biofilms were comparable after 3 days. Staining of biofilms with Congo red gave results similar to those obtained with the commonly used crystal violet staining. The level of biofilm formation by nonmotile aflagellate strains was lower than that observed for the motile flagellated strain but nonetheless increased under aerobic conditions, suggesting the presence of flagellum-dependent and flagellum-independent mechanisms of biofilm formation in C. jejuni. Moreover, preformed biofilms shed high numbers of viable C. jejuni cells into the culture supernatant independently of the oxygen concentration, suggesting a continuous passive release of cells into the medium rather than a condition-specific active mechanism of dispersal. We conclude that under aerobic or stressful conditions, C. jejuni adapts to a biofilm lifestyle, allowing survival under detrimental conditions, and that such a biofilm can function as a reservoir of viable planktonic cells. The increased level of biofilm formation under aerobic conditions is likely to be an adaptation contributing to the zoonotic lifestyle of C. jejuni.


2020 ◽  
Vol 367 (20) ◽  
Author(s):  
Meghan Wymore Brand ◽  
Orhan Sahin ◽  
Jesse M Hostetter ◽  
Julian Trachsel ◽  
Qijing Zhang ◽  
...  

ABSTRACT Campylobacter jejuni is a major cause of food-borne human bacterial gastroenteritis but animal models for C. jejuni mediated disease remain limited because C. jejuni poorly colonizes immunocompetent, conventionally-reared (Conv-R) mice. Thus, a reliable rodent model (i.e. persistent colonization) is desirable in order to evaluate C. jejuni-mediated gastrointestinal disease and mechanisms of pathogenicity. As the nature and complexity of the microbiota likely impacts colonization resistance for C. jejuni, Conv-R and gnotobiotic C3H/HeN mice were used to evaluate the persistence of C. jejuni colonization and development of disease. A total of four C. jejuni isolates readily and persistently colonized ASF mice and induced mild mucosal inflammation in the proximal colon, but C. jejuni did not stably colonize nor induce lesions in Conv-R mice. This suggests that the pathogenesis of C. jejuni is influenced by the microbiota, and that ASF mice offer a reproducible model to study the influence of the microbiota on the ability of C. jejuni to colonize the gut and to mediate gastroenteritis.


2005 ◽  
Vol 71 (6) ◽  
pp. 3205-3212 ◽  
Author(s):  
Lone Brøndsted ◽  
Marianne Thorup Andersen ◽  
Mary Parker ◽  
Kirsten Jørgensen ◽  
Hanne Ingmer

ABSTRACT Campylobacter jejuni is a predominant cause of food-borne bacterial gastroenteritis in the developed world. We have investigated the importance of a homologue of the periplasmic HtrA protease in C. jejuni stress tolerance. A C. jejuni htrA mutant was constructed and compared to the parental strain, and we found that growth of the mutant was severely impaired both at 44°C and in the presence of the tRNA analogue puromycin. Under both conditions, the level of misfolded protein is known to increase, and we propose that the heat-sensitive phenotype of the htrA mutant is caused by an accumulation of misfolded protein in the periplasm. Interestingly, we observed that the level of the molecular chaperones DnaK and ClpB was increased in the htrA mutant, suggesting that accumulation of nonnative proteins in the periplasm induces the expression of cytoplasmic chaperones. While lack of HtrA reduces the oxygen tolerance of C. jejuni, the htrA mutant was not sensitive to compounds that increase the formation of oxygen radicals, such as paraquat, cumene hydroperoxide, and H2O2. Using tissue cultures of human epithelial cells (INT407), we found that the htrA mutant adhered to and invaded human epithelial cells with a decreased frequency compared to the wild-type strain. This defect may be a consequence of the observed altered morphology of the htrA mutant. Thus, our results suggest that in C. jejuni, HtrA is important for growth during stressful conditions and has an impact on virulence.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nitanshu Garg ◽  
Aidan J. Taylor ◽  
Federica Pastorelli ◽  
Sarah E. Flannery ◽  
Phillip J. Jackson ◽  
...  

Bacterial C-type haem-copper oxidases in the cbb3 family are widespread in microaerophiles, which exploit their high oxygen-binding affinity for growth in microoxic niches. In microaerophilic pathogens, C-type oxidases can be essential for infection, yet little is known about their biogenesis compared to model bacteria. Here, we have identified genes involved in cbb3-oxidase (Cco) assembly and activity in the Gram-negative pathogen Campylobacter jejuni, the commonest cause of human food-borne bacterial gastroenteritis. Several genes of unknown function downstream of the oxidase structural genes ccoNOQP were shown to be essential (cj1483c and cj1486c) or important (cj1484c and cj1485c) for Cco activity; Cj1483 is a CcoH homologue, but Cj1484 (designated CcoZ) has structural similarity to MSMEG_4692, involved in Qcr-oxidase supercomplex formation in Mycobacterium smegmatis. Blue-native polyacrylamide gel electrophoresis of detergent solubilised membranes revealed three major bands, one of which contained CcoZ along with Qcr and oxidase subunits. Deletion of putative copper trafficking genes ccoI (cj1155c) and ccoS (cj1154c) abolished Cco activity, which was partially restored by addition of copper during growth, while inactivation of cj0369c encoding a CcoG homologue led to a partial reduction in Cco activity. Deletion of an operon encoding PCuAC (Cj0909) and Sco (Cj0911) periplasmic copper chaperone homologues reduced Cco activity, which was partially restored in the cj0911 mutant by exogenous copper. Phenotypic analyses of gene deletions in the cj1161c–1166c cluster, encoding several genes involved in intracellular metal homeostasis, showed that inactivation of copA (cj1161c), or copZ (cj1162c) led to both elevated intracellular Cu and reduced Cco activity, effects exacerbated at high external Cu. Our work has therefore identified (i) additional Cco subunits, (ii) a previously uncharacterized set of genes linking copper trafficking and Cco activity, and (iii) connections with Cu homeostasis in this important pathogen.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 868
Author(s):  
Ann-Katrin Llarena ◽  
Rauni Kivistö

Campylobacter jejuni (C. jejuni) is the most common cause of human bacterial gastroenteritis in the world. Food-borne campylobacteriosis is thought to be commonly caused by the handling and consumption of undercooked chicken meat, but the epidemiology of this disease is complex and remains poorly characterized, especially in the Nordic countries. Here, we used state-of-the-art methods in genetic epidemiology combined with patient background and temporal association data to trace domestically acquired human C. jejuni infections (n = 50) to chicken meat, in a midsize Nordic town in Finland during a seasonal peak. Although 59.2% of the human isolates shared a sequence type (ST) with a chicken batch slaughtered prior to the onset of disease, further analysis at the whole-genome level (core genome and whole-genome multilocus sequence typing, cgMLST and wgMLST, respectively) traced a mere nine cases (18.4%) to fresh chicken meat. Human isolates also shared genotypes with isolates collected from chicken batches slaughtered after the onset of the human disease, highlighting the role of alternative transmission pathways from chickens to humans besides the food chain, or a shared third source. The high resolution offered by wgMLST, combined with simple metadata, offers a more accurate way to trace sporadic cases to possible sources and reveal disseminated outbreak clustering in time, confirming the importance of complementing epidemiological investigations with molecular epidemiological data.


2007 ◽  
Vol 30 (4) ◽  
pp. 93
Author(s):  
I Sekirov ◽  
N Tam ◽  
M Robertson ◽  
C Lupp ◽  
B Finlay

Background: During our lifetimes we develop a very complex set of interactions with the multitude of microorganisms colonizing our bodies. In the gastrointestinal system, the microbiota is highly important for morphological development, nutrition, and protection against infectious diseases. The gastrointestinal pathogens, enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) and Salmonella enterica serovar Typhimurium (ST) are food-borne pathogens that cause much morbidity and mortality worldwide. Citrobacter rodentium (Cr) is a mouse pathogen that is used in small animal models to mimic EHEC and EPEC infections. Methods: We began to characterize the contribution of intestinal microbiota to the progression of these infections. Two main phyla comprise the majority of mouse intestinal microbiota: Bacteroidetes and Firmicutes. Bacteria from a number of additional phyla are also present in smaller numbers; among them γ-Proteobacteria class, belonging to Proteobacteria phylum, is note-worthy as this class harbours many intestinal pathogens, such as ST and Cr. The mouse intestinal microbiota was perturbed using tetracycline (Tet) and streptomycin (Sm) to increase the proportion of Bacteroidetes in the colonic microbiota, and using vancomycin (Vanc) to create a predominance of Firmicutes. The mice with this perturbed microbiota were infected with ST to investigate the resultant pathology and virulence characteristics, and any additional shifts in microbiota as a result of infection. Results: Treatment of mice with Sm and Vanc was found to decrease the resistance of mice to colonization with ST, while Tet-treated mice exhibited unchanged colonization resistance. Treatment of mice with gradually increasing doses of Sm, which gradually augmented the proportion of CFB bacteria in the microbiota, resulted in progressively increasing colonization of mice by ST, as well as a step-wise increase in the ST-induced typhlitis, associated with higher levels of inflammatory markers IL-6 and KC. The increasing levels of ST colonization following both Sm and Vanc treatment were associated with an increase in the proportion of γ-Proteobacteria in the cecal and colonic microbiota, as well as a decrease in the total bacterial numbers in both organs. Conclusions: It is evident that the intestinal microbiota plays a significant role in the host’s response to infection with enteric pathogens, and its composition and numbers are also affected by the offending bacteria. Elucidation of the details regarding the contribution of the microbiota to infectious disease progression will offer novel targets for the future design of superior prevention and treatment methods.


Sign in / Sign up

Export Citation Format

Share Document