High-Temperature Corrosion of Copper Induced by TeO2

CORROSION ◽  
10.5006/3295 ◽  
2020 ◽  
Vol 76 (2) ◽  
pp. 210-216
Author(s):  
Anton Klimashin

It was found that copper is susceptible to the accelerated high-temperature corrosion induced by TeO2 at 650°C in air, which occurs at a constant rate. The calculated corrosion rate constant is 4.5 × 10−4 kg·m−2·s−1 and does not depend on the specific mass of tellurium oxide. Based on the results of the analysis of the microstructure (scanning electron microscopy/energy dispersive x-ray spectroscopy) and the phase composition (x-ray diffraction) of two formed corrosion layers, the phase distribution in the corrosion product has been ascertained. It was shown that during the corrosion process at 650°С, the inner corrosion layer containing Cu2O and Cu2Te and the outer corrosion layer mainly containing CuTe2O5 and Cu2O were formed. The inner layer provides a high copper ion conductivity due to Cu2Te, while the outer layer possesses a high oxygen ion conductivity due to the oxide melt. The mechanism of the overall corrosion process has been proposed.

2019 ◽  
Vol 66 (2) ◽  
pp. 236-241 ◽  
Author(s):  
Somrerk Chandra-Ambhorn ◽  
Neramit Krasaelom ◽  
Tummaporn Thublaor ◽  
Sirichai Leelachao

Purpose This study aims to apply the pack cementation to develop the Fe-Al layers on the surface of FC 25 cast iron in order to increase the high-temperature corrosion resistance of the alloy. Design/methodology/approach Pack cementation was applied on the surface of FC 25 cast iron at 1,050°C. The bare and aluminised alloys were subjected to the oxidation test in 20 per cent O2-N2 at 850 °C. Scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD) were used for characterisation. Findings The layers of pack cementation consisted of Fe2Al5, FeAl2 and FeAl, and solid solution alloyed with Al. The oxidation kinetics of the bare cast iron was parabolic. Mass gain of the aluminised cast iron was significantly decreased compared with that of the bare cast iron. This was because of the protective alumina formation on the aluminised alloy surface. Al in the Fe–Al layer also tended to be homogenised during oxidation. Originality/value Even though the aluminising of alloys was extensively studied, the application of that process to the FC 25 cast iron grade was originally developed in this work. The significantly reduced mass gain of the aluminised FC 25 cast iron makes the studied alloy be promising for the use as a valve seat insert in an agricultural single-cylinder four-stroke engine, which might be run by using a relatively cheaper fuel, i.e. LPG, but as a consequence requires the higher oxidation resistance of the engine parts.


2019 ◽  
Vol 27 (06) ◽  
pp. 1950155
Author(s):  
KWANG-HU JUNG ◽  
SEONG-JONG KIM

The corrosion characteristics of Inconel 600 were investigated at 650∘C in air and 76%[Formula: see text]%[Formula: see text]%[Formula: see text]%SO2 gas environment up to 500[Formula: see text]h. Specimens exposed to each condition were characterized by weight gain, scanning electron microscope, energy dispersive X-ray spectroscopy and X-ray diffraction. The oxide structure consisting of the thin Cr2O3 layer and Cr2O3 nodules was observed, which increased the weight gain of specimens. In the SO2-bearing gas, it showed a bigger weight gain due to the coarsening of Cr2O3 nodules. Therefore, it was suggested that the sulfur-accelerated coarsening of Cr2O3 nodules at the high temperature.


1991 ◽  
Vol 79-82 ◽  
pp. 617-622
Author(s):  
Vladislav Kolarik ◽  
Maria Juez-Lorenzo ◽  
N. Eisenreich ◽  
W. Engel

1993 ◽  
Vol 03 (C9) ◽  
pp. C9-461-C9-467 ◽  
Author(s):  
M. Juez-Lorenzo ◽  
V. Kolarik ◽  
N. Eisenreich ◽  
W. Engel ◽  
A. J. Criado

1999 ◽  
Vol 575 ◽  
Author(s):  
Akihiko Yamaji ◽  
Kazuya Kawakami ◽  
Masahiro Arai ◽  
Tadaharu Adachi

ABSTRACTThe high temperature cubic phase of Ba2 nr2O5 shows large ion conductivity. It is interestingto examine, if the cubic phase can be stabilized in the low temperature region (920 C) by making solid solution of another element. In the present study, we investigated the ion conductivity and the crystal structure of Ba2(In2-x.Mx)O5 system by substituting In site for element M such as Sc, Y, La, Ce, Nb, Ta etc. By substituting 3 mole % Nb for In, the transition temperature decreased by about 300 C. High temperature X-ray diffraction analysis shows the crystal structure changes from orthorhombic to cubic at this transition temperature. The effective elements which decreased the transition temperature were pentavalent or tetra valent elements such as Nb or Si ,Ce. The substitution In site for 20 mole percentage Nb stabilizes the cubic structure down to room temperature. Considering the transport number, the tetravalent element doping is very effective to stabilize the cubic phase of Ba2In2O5 without lose of excellent characteristic of pure Ba2ln2O5.


1993 ◽  
Vol 133-136 ◽  
pp. 569-574
Author(s):  
Maria Juez-Lorenzo ◽  
Vladislav Kolarik ◽  
N. Eisenreich ◽  
W. Engel ◽  
A.J. Criado

2012 ◽  
Vol 501 ◽  
pp. 165-168
Author(s):  
S. Nurul Atikah ◽  
Norinsan Kamil Othman ◽  
Azman Jalar

A plate of Fe-30Cr (wt%) were subjected to isothermal furnace at 600 °C in flowing CO2 gas at total pressure of approximately 1 atm. The reacted samples morphology and microstructure were characterized by using visual inspection, optical microscope, SEM and EDAX. The weight change measurement showed a fluctuating result during the exposure. The significant weight loss was observed after five hours exposure due to oxide scale exfoliation. Formation of different oxide and element presents on the interface of the specimen such as Cr2O3, C and Fe3C were revealed by X-ray diffraction and with supported by EDAX analysis. This behavior of the high temperature corrosion on Fe-30Cr was discussed based on morphology and microstructure observation.


1993 ◽  
Vol 03 (C9) ◽  
pp. C9-447-C9-452 ◽  
Author(s):  
V. Kolarik ◽  
M. Juez-Lorenzo ◽  
N. Eisenreich ◽  
W. Engel

Sign in / Sign up

Export Citation Format

Share Document