scholarly journals Calculating the Probability of Constitutional Isomers of Pentane

Author(s):  
Mary-Margaret Dare

Depending on the reagent, and orientation of collisions within a chemical reaction, organic molecules can be present as different constitutional isomers of the same molecule. We can analyze the likelihood of getting a mixture of pentane with certain conformers. Based on this, we find that there are 16 potential conformers, but 13 are identical structures, meaning only three are distinct from each other. Using the product rule, we then demonstrate how to go about calculating the probability of specific conformers, including specific identical structures, being present in a mixture, and then we demonstrate that process is strictly within the three different conformers.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sina Stocker ◽  
Gábor Csányi ◽  
Karsten Reuter ◽  
Johannes T. Margraf

Abstract Chemical compound space refers to the vast set of all possible chemical compounds, estimated to contain 1060 molecules. While intractable as a whole, modern machine learning (ML) is increasingly capable of accurately predicting molecular properties in important subsets. Here, we therefore engage in the ML-driven study of even larger reaction space. Central to chemistry as a science of transformations, this space contains all possible chemical reactions. As an important basis for ‘reactive’ ML, we establish a first-principles database (Rad-6) containing closed and open-shell organic molecules, along with an associated database of chemical reaction energies (Rad-6-RE). We show that the special topology of reaction spaces, with central hub molecules involved in multiple reactions, requires a modification of existing compound space ML-concepts. Showcased by the application to methane combustion, we demonstrate that the learned reaction energies offer a non-empirical route to rationally extract reduced reaction networks for detailed microkinetic analyses.


1973 ◽  
Vol 52 ◽  
pp. 369-373 ◽  
Author(s):  
J. Mayo Greenberg ◽  
Andrew J. Yencha

The triggering of an explosive chemical reaction in a grain which consists of free radicals frozen in a matrix of photolyzed dirty ice material is seen as a possible source of complex interstellar organic molecules.


2021 ◽  
pp. 2100865
Author(s):  
Adi Prasetio ◽  
Muhammad Jahandar ◽  
Soyeon Kim ◽  
Jinhee Heo ◽  
Yong Hyun Kim ◽  
...  

Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


Author(s):  
Douglas L. Dorset

The quantitative use of electron diffraction intensity data for the determination of crystal structures represents the pioneering achievement in the electron crystallography of organic molecules, an effort largely begun by B. K. Vainshtein and his co-workers. However, despite numerous representative structure analyses yielding results consistent with X-ray determination, this entire effort was viewed with considerable mistrust by many crystallographers. This was no doubt due to the rather high crystallographic R-factors reported for some structures and, more importantly, the failure to convince many skeptics that the measured intensity data were adequate for ab initio structure determinations.We have recently demonstrated the utility of these data sets for structure analyses by direct phase determination based on the probabilistic estimate of three- and four-phase structure invariant sums. Examples include the structure of diketopiperazine using Vainshtein's 3D data, a similar 3D analysis of the room temperature structure of thiourea, and a zonal determination of the urea structure, the latter also based on data collected by the Moscow group.


Author(s):  
Dai Dalin ◽  
Guo Jianmin

Lipid cytochemistry has not yet advanced far at the EM level. A major problem has been the loss of lipid during dehydration and embedding. Although the adoption of glutaraldehyde and osmium tetroxide accelerate the chemical reaction of lipid and osmium tetroxide can react on the double bouds of unsaturated lipid to from the osmium black, osmium tetroxide can be reduced in saturated lipid and subsequently some of unsaturated lipid are lost during dehydration. In order to reduce the loss of lipid by traditional method, some researchers adopted a few new methods, such as the change of embedding procedure and the adoption of new embedding media, to solve the problem. In a sense, these new methods are effective. They, however, usually require a long period of preparation. In this paper, we do research on the fiora nectary strucure of lauraceae by the rapid-embedding method wwith PEG under electron microscope and attempt to find a better method to solve the problem mentioned above.


Sign in / Sign up

Export Citation Format

Share Document